Acrolein (CH 2 ACHOCHO) is known as a ubiquitous pollutant in the environment. Here we show that this notorious aldehyde is not just a pollutant, but also a lipid peroxidation product that could be ubiquitously generated in biological systems. Upon incubation with BSA, acrolein was rapidly incorporated into the protein and generated the protein-linked carbonyl derivative, a putative marker of oxidatively modified proteins under oxidative stress. To verify the presence of protein-bound acrolein in vivo, the mAb (mAb5F6) against the acrolein-modified keyhole limpet hemocyanin was raised. It was found that the acrolein-lysine adduct, N -(3-formyl-3,4-dehydropiperidino)lysine, constitutes an epitope of the antibody. Immunohistochemical analysis of atherosclerotic lesions from a human aorta demonstrated that antigenic materials recognized by mAb5F6 indeed constituted the lesions, in which intense positivity was associated primarily with macrophage-derived foam cells and the thickening neointima of arterial walls. The observations that (i) oxidative modification of low-density lipoprotein with Cu 2؉ generated the acrolein-low-density lipoprotein adducts and (ii) the ironcatalyzed oxidation of arachidonate in the presence of protein resulted in the formation of antigenic materials suggested that polyunsaturated fatty acids are sources of acrolein that cause the production of protein-bound acrolein. These data suggest that the protein-bound acrolein represents potential markers of oxidative stress and long-term damage to protein in aging, atherosclerosis, and diabetes.
Fructooligosaccharides (FOS) stimulate the growth of bifidobacteria, which cleave isoflavone conjugates to yield the corresponding aglycones and metabolites. In a previous study, FOS modified the absorption and enterohepatic recirculation of isoflavones in rats. In the present study, we determined the effect of the combination of dietary FOS and isoflavone conjugates on bone mass in ovariectomized (OVX) and surgical control mice. After undergoing OVX or sham operation, female ddY mice (8 wk old, n = 64) were randomly assigned to four groups: a purified control diet (AIN-93G) group, a FOS diet (AIN-93G + 5% FOS) group, an isoflavone diet (AIN-93G + 0.2% isoflavone conjugates) group, or a FOS and isoflavone diet (AIN-93G + 5% FOS + 0.2% isoflavone conjugates) group. After 6 wk, the mice were killed and the blood and femora were sampled immediately. In OVX mice, both isoflavone conjugates and FOS prevented femoral bone loss. An additive effect of dietary isoflavone conjugates and FOS was observed by dual-energy X-ray absorptiometry in the distal part of the femur and in trabecular bone, by peripheral quantitative computed tomography. Moreover, FOS increased cecal beta-glucosidase activity and equol production from daidzein in both OVX and surgical control mice fed isoflavone conjugates. These results suggest that FOS increase the bioavailability of isoflavones, leading to cooperative effects in the prevention of osteopenia in OVX mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.