Collision avoidance is an intensive discussion issue for navigation safety. This article introduces a new routing algorithm for finding optimal routes with collision detection and avoidance on raster charts or planes. After the required data structure of the raster chart is initialized, the maze routing algorithm is applied to obtain the particular route of each ship. Those ships that have potential to collide will be detected by simulating the particular routes with ship domains. The collision avoidance scheme can be achieved by using the collision-area-marking method with collision avoidance rules at sea. The algorithm has linear time and space complexities, and is sufficiently fast to perform real-time routing on the raster charts.
This paper focuses on depth trajectory tracking control for a Remotely Operated Vehicle (ROV) with dead-zone nonlinearity and saturation nonlinearity of thruster; an adaptive sliding mode control method based on neural network is proposed. Through the analysis of dead-zone nonlinearity and saturation nonlinearity of thruster, the depth trajectory tracking control system model of a ROV which uses thruster control signals as system input has been established. According to the principle of sliding mode control, an adaptive sliding mode depth trajectory tracking controller is built by using three-layer feed-forward neural network for online identification of unknown items. The selection method and update laws of the control parameters are also given. The uniform ultimate boundedness of trajectory tracking error is analysed by Lyapunov theorem. Finally, the effectiveness of the proposed method is illustrated by simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.