BackgroundArum palaestinum is a plant commonly found in the Middle East that is ingested as an herbal remedy to fight cancer. However, no studies have examined the direct effect of the plant/plant extract on tumor growth in an animal model.MethodsVerified prostate cancer cells were plated as 3D spheroids to determine the effect of extract from boiled Arum Palaestinum Boiss roots. In addition, male NU/NU mice (8 weeks old) with xenograft tumors derived from the prostate cancer cell line were treated daily with 1000 mg/kg body weight gavage of the suspension GZ17. The tumor growth was measured repeatedly with calipers and the excised tumors were weighed at the termination of the 3 week study. Control mice (10 mice in each group) received vehicle in the same manner and volume.ResultsThe number of live prostate cancer cells declined in a dose/dependent manner with a 24 h exposure to the extract at doses of 0.015 to 6.25 mg/mL. A fortified version of the extract (referred to as GZ17) that contained higher levels of isovanillin, linolenic acid and β-sitosterol had a stronger effect on the cell death rate, shifting the percentage of dead cells from 30 % to 55 % at the highest dose while the vehicle control had no effect on cell numbers. When GZ17 was applied to non-cancer tissue, in this case, human islets, there was no cell death at doses that were toxic to treated cancer cells. Preliminary toxicity studies were conducted on rats using an up-down design, with no signs of toxic effect at the highest dose. NU/NU mice with xenograft prostate tumors treated with GZ17 had a dramatic inhibition of tumor progression, while tumors in the control group grew steadily through the 3 weeks. The rate of tumor volume increase was 73 mm3/day for the vehicle group and 24 mm3/day for the GZ17 treated mice. While there was a trend towards lower excised tumor weight at study termination in the GZ17 treatment group, there was no statistical difference.ConclusionsFortified Arum palaestinum Boiss caused a reduction in live cells within prostate cancer spheroids and blocked tumor growth in xenografted prostate tumors in mice without signs of toxicity.
TX 75083-3836 U.S.A., fax 01-972-952-9435.
AbstractAn improvement has been made in anti-corrosion chemicals for oilfield use. A binary corrosion inhibitor has been patented and field proven which combines an epoxy resin and an amine curing agent. The proper application of this unique combination of chemicals forms a bond with the oxide film present on downhole metal surfaces. The result is a corrosion inhibitor barrier that is more tenacious than conventional polar filming amines, reducing application frequency and labor costs, and even more importantly, downhole failures. The binary corrosion inhibitor is also an improvement over and is more versatile than other epoxy-amine products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.