The perinuclear theca (PT) is a condensed, nonionic detergent resistant cytosolic protein layer encapsulating the sperm head nucleus. It can be divided into two regions: the subacrosomal layer, whose proteins are involved in acrosomal assembly during spermiogenesis, and the postacrosomal sheath (PAS), whose proteins are implicated in sperm–oocyte interactions during fertilization. In continuation of our proteomic analysis of the PT, we have isolated two prominent PT-derived proteins of 28 and 31 kDa from demembranated bovine sperm head fractions. These proteins were identified by mass spectrometry as isoforms of glutathione-s-transferase omega 2 (GSTO2). Immunoblots probed with anti-GSTO2 antibodies confirmed the presence of the GSTO2 isoforms in these fractions while fluorescent immunocytochemistry localized the isoforms to the PAS region of the bull, boar, and murid PT. In addition to the PAS labeling of GSTO2, the performatorium of murid spermatozoa was also labeled. Immunohistochemistry of rat testes revealed that GSTO2 was expressed in the third phase of spermatogenesis (i.e., spermiogenesis) and assembled in the PAS and perforatorial regions of late elongating spermatids. Fluorescent immunocytochemistry performed on murine testis cells co-localized GSTO2 and tubulin on the transient microtubular-manchette of elongating spermatids. These findings imply that GSTO2 is transported and deposited in the PAS region by the manchette, conforming to the pattern of assembly found with other PAS proteins. The late assembly of GSTO2 and its localization in the PAS suggests a role in regulating the oxidative and reductive state of covalently linked spermatid/sperm proteins, especially during the disassembly of the sperm accessory structures after fertilization.
The combined effect of dissolved gas composition and heat treatment on the oxidative degradation of a dairy beverage enriched with 2% linseed oil was studied. The dairy beverage was saturated with air, nitrogen, or a nitrogen/hydrogen mixture (4% hydrogen) before pasteurization or sterilization. Saturation with either nitrogen or a nitrogen/hydrogen mixture decreased the dissolved oxygen concentration in dairy beverages (Delta = 7.7 ppm), and the presence of hydrogen significantly reduced the redox potential (Delta = 287 mV). Heat treatments also reduced the oxygen content and redox potential, sterilization being more effective than pasteurization. Both pasteurization and sterilization induced the oxidative degradation of the beverages. On average, the propanal concentration increased by a factor of 2.3 after pasteurization and by a factor of 6.2 after sterilization. However, during storage, sterilized beverages resisted light-induced oxidation better than unheated or pasteurized beverages. Furthermore, saturation with nitrogen or a nitrogen/hydrogen mixture significantly reduced oxidative degradation and provided some protection against color changes during storage.
The sperm-borne oocyte-activating factor (SOAF) resides in the sperm perinuclear theca (PT). A consensus has been reached that SOAF most likely resides in the postacrosomal sheath (PAS), which is the first region of the PT to solubilize upon sperm-oocyte fusion. There are two SOAF candidates under consideration: PLCZ1 and WBP2NL. A mouse gene germline ablation of the latter showed that mice remain fertile with no observable phenotype despite the fact that a competitive inhibitor of WBP2NL, derived from its PPXY motif, blocks oocyte activation when coinjected with WBP2NL or spermatozoa. This suggested that the ortholog of WBP2NL, WBP2, containing the same domain and motifs associated with WBP2NL function, might compensate for its deficiency in oocyte activation. Our objectives were to examine whether WBP2 meets the developmental criteria established for SOAF and whether it has oocyte-activating potential. Immunoblotting detected WBP2 in mice testis and sperm and immunofluorescence localized WBP2 to the PAS and perforatorium of the PT. Immunohistochemistry of the testes revealed that WBP2 reactivity was highest in round spermatids and immunofluorescence detected WBP2 in the cytoplasmic lobe of elongating spermatids and colocalized it with the microtubular manchette during PT assembly. Microinjection of the recombinant forms of WBP2 and WBP2NL into metaphase II mouse oocytes resulted in comparable rates of oocyte activation. This study shows that WBP2 shares a similar testicular developmental pattern and location with WBP2NL and a shared ability to activate the oocyte, supporting its consideration as a mouse SOAF component that can compensate for a WBP2NL.
The perinuclear theca (PT) of the eutherian sperm head is a cytoskeletal-like structure that houses proteins involved in important cellular processes during spermiogenesis and fertilization. Building upon our novel discovery of non-nuclear histones in the bovine PT, we sought to investigate whether this PT localization was a conserved feature of eutherian sperm. Employing cell fractionation, immunodetection, mass spectrometry, qPCR, and intracytoplasmic sperm injections (ICSI), we examined the localization, developmental origin, and functional potential of histones from the murid PT. Immunodetection localized histones to the post-acrosomal sheath (PAS) and the perforatorium (PERF) of the PT but showed an absence in the sperm nucleus. MS/MS analysis of selectively extracted PT histones indicated that predominately core histones (i.e., H3, H3.3, H2B, H2A, H2AX, and H4) populate the murid PT. These core histones appear to be de novo-synthesized in round spermatids and assembled via the manchette during spermatid elongation. Mouse ICSI results suggest that early embryonic development is delayed in the absence of PT-derived core histones. Here, we provide evidence that core histones are de novo-synthesized prior to PT assembly and deposited in PT sub-compartments for subsequent involvement in chromatin remodeling of the male pronucleus post-fertilization.
The differentiation of mouse spermatids is one critical process for the production of a functional male gamete with an intact genome to be transmitted to the next generation. So far, molecular studies of this morphological transition have been hampered by the lack of a method allowing adequate separation of these important steps of spermatid differentiation for subsequent analyses. Earlier attempts at proper gating of these cells using flow cytometry may have been difficult because of a peculiar increase in DNA fluorescence in spermatids undergoing chromatin remodeling. Based on this observation, we provide details of a simple flow cytometry scheme, allowing reproducible purification of four populations of mouse spermatids fixed with ethanol, each representing a different state in the nuclear remodeling process. Population enrichment is confirmed using step-specific markers and morphological criterions. The purified spermatids can be used for genomic and proteomic analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.