The increased interest in using monoclonal antibodies (mAbs) as a platform for biopharmaceuticals has led to the need for new analytical techniques that can precisely assess physicochemical properties of these large and very complex drugs for the purpose of correctly identifying quality attributes (QA). One QA, higher order structure (HOS), is unique to biopharmaceuticals and essential for establishing consistency in biopharmaceutical manufacturing, detecting process-related variations from manufacturing changes and establishing comparability between biologic products. To address this measurement challenge, two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) methods were introduced that allow for the precise atomic-level comparison of the HOS between two proteins, including mAbs. Here, an inter-laboratory comparison involving 26 industrial, government and academic laboratories worldwide was performed as a benchmark using the NISTmAb, from the National Institute of Standards and Technology (NIST), to facilitate the translation of the 2D-NMR method into routine use for biopharmaceutical product development. Two-dimensional 1H,15N and 1H,13C NMR spectra were acquired with harmonized experimental protocols on the unlabeled Fab domain and a uniformly enriched-15N, 20%-13C-enriched system suitability sample derived from the NISTmAb. Chemometric analyses from over 400 spectral maps acquired on 39 different NMR spectrometers ranging from 500 MHz to 900 MHz demonstrate spectral fingerprints that are fit-for-purpose for the assessment of HOS. The 2D-NMR method is shown to provide the measurement reliability needed to move the technique from an emerging technology to a harmonized, routine measurement that can be generally applied with great confidence to high precision assessments of the HOS of mAb-based biotherapeutics.
The effects of pH variation on the amide chemical shifts suggest the presence of cation-pi interactions between His-79 and Trp-118, and His-156-Trp-58-His-52 that stabilizes the conformation at low pH. This may be associated with a small local conformational change. The NMR data showed that polysorbate does not interact significantly with filgrastim thus allowing the collection of spectra in the presence of 20 times the formulation concentration in the sample. However, at higher detergent concentrations a reduction of signal intensity is observed. Conclusions The NMR fingerprint assay applied to filgrastim (Neupogen® and a CRS from the European Pharmacopeia (EP)) provided residue specific information of the structure of the drug substance. In addition to current methods, the ability to assess the conformation with a high degree of resolution can greatly facilitate comparability exercises.
We describe a simple, powerful, and robust NMR-based method that has the potential to greatly impact the characterization of recombinant protein therapeutics. The method ascertains the bioactive conformational identity of recombinant human granulocyte macrophage-colony stimulation factor (rhGM-CSF) produced in Streptomyces lividans versus Escherichia coli by overlaying their 2D 1H,15N HSQC correlation spectra. An identical match of all resonances implies that rhGM-CSF from both processes share indistinguishable conformations that correlate with in vitro activity. The result of this method is unique among existing methods. It can detect and quantify the active ingredient. Moreover it provides a complete assessment of the conformation with high sensitivity to minor structural changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.