In budding yeast, the most abundantly spliced pre-mRNAs encode ribosomal proteins (RPs). To investigate the contribution of splicing to ribosome production and function, we systematically eliminated introns from all RP genes to evaluate their impact on RNA expression, pre-rRNA processing, cell growth, and response to stress. The majority of introns were required for optimal cell fitness or growth under stress. Most introns are found in duplicated RP genes, and surprisingly, in the majority of cases, deleting the intron from one gene copy affected the expression of the other in a nonreciprocal manner. Consistently, 70% of all duplicated genes were asymmetrically expressed, and both introns and gene deletions displayed copy-specific phenotypic effects. Together, our results indicate that splicing in yeast RP genes mediates intergene regulation and implicate the expression ratio of duplicated RP genes in modulating ribosome function.
Tumor suppressor SMARCA4 (BRG1), a key SWI/SNF chromatin remodeling gene, is frequently inactivated in cancers and is not directly druggable. We recently uncovered that SMARCA4 loss in an ovarian cancer subtype causes cyclin D1 deficiency leading to susceptibility to CDK4/6 inhibition. Here, we show that this vulnerability is conserved in non-small cell lung cancer (NSCLC), where SMARCA4 loss also results in reduced cyclin D1 expression and selective sensitivity to CDK4/6 inhibitors. In addition, SMARCA2, another SWI/SNF subunit lost in a subset of NSCLCs, also regulates cyclin D1 and drug response when SMARCA4 is absent. Mechanistically, SMARCA4/2 loss reduces cyclin D1 expression by a combination of restricting CCND1 chromatin accessibility and suppressing c-Jun, a transcription activator of CCND1. Furthermore, SMARCA4 loss is synthetic lethal with CDK4/6 inhibition both in vitro and in vivo, suggesting that FDA-approved CDK4/6 inhibitors could be effective to treat this significant subgroup of NSCLCs.
Splicing regulates gene expression and contributes to proteomic diversity in higher eukaryotes. However, in yeast only 283 of the 6000 genes contain introns and their impact on cell function is not clear. To assess the contribution of introns to cell function, we initiated large-scale intron deletions in yeast with the ultimate goal of creating an intron-free model eukaryote. We show that about one-third of yeast introns are not essential for growth. Only three intron deletions caused severe growth defects, but normal growth was restored in all cases by expressing the intronless mRNA from a heterologous promoter. Twenty percent of the intron deletions caused minor phenotypes under different growth conditions. Strikingly, the combined deletion of all introns from the 15 cytoskeleton-related genes did not affect growth or strain fitness. Together, our results show that although the presence of introns may optimize gene expression and provide benefit under stress, a majority of introns could be removed with minor consequences on growth under laboratory conditions, supporting the view that many introns could be phased out of Saccharomyces cerevisiae without blocking cell growth.
Polyoma- and papillomaviruses genome replication is initiated by the binding of large T antigen (LT) and of E1 and E2, respectively, at the viral origin (ori). Replication of an ori-containing plasmid occurs in cells transiently expressing these viral proteins and is typically quantified by Southern blotting or PCR. To facilitate the study of SV40 and HPV31 DNA replication, we developed cellular assays in which transient replication of the ori-plasmid is quantified using a firefly luciferase gene located in cis to the ori. Under optimized conditions, replication of the SV40 and HPV31 ori-plasmids resulted in a 50- and 150-fold increase in firefly luciferase levels, respectively. These results were validated using replication-defective mutants of LT, E1 and E2 and with inhibitors of DNA replication and cell-cycle progression. These quantitative and high-throughput assays should greatly facilitate the study of SV40 and HPV31 DNA replication and the identification of small-molecule inhibitors of this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.