Spermatogenesis generates mature male gametes and is critical for the proper transmission of genetic information between generations. However, the developmental landscapes of human spermatogenesis remain unknown. Here, we performed single-cell RNA sequencing (scRNA-seq) analysis for 2,854 testicular cells from donors with normal spermatogenesis and 174 testicular cells from one nonobstructive azoospermia (NOA) donor. A hierarchical model was established, which was characterized by the sequential and stepwise development of three spermatogonia subtypes, seven spermatocyte subtypes, and four spermatid subtypes. Further analysis identified several stage-specific marker genes of human germ cells, such as HMGA1, PIWIL4, TEX29, SCML1, and CCDC112. Moreover, we identified altered gene expression patterns in the testicular somatic cells of one NOA patient via scRNA-seq analysis, paving the way for further diagnosis of male infertility. Our work allows for the reconstruction of transcriptional programs inherent to sequential cell fate transition during human spermatogenesis and has implications for deciphering male-related reproductive disorders.
Conditioned medium from mesenchymal stem cells (MSC-CM) may represent a promising alternative to MSCs transplantation, however, the low concentrations of growth factors in non-activated MSC-CM hamper its clinical application. Recent data indicated that the paracrine potential of MSCs could be enhanced by inflammatory factors. Herein, we pre-activated bone-marrow-derived MSCs under radiation-induced inflammatory condition (MSCIEC-6(IR)) and investigated the evidence and mechanism for the differential effects of MSC-CMIEC-6(IR) and non-activated MSC-CM on radiation-induced intestinal injury (RIII). Systemic infusion of MSC-CMIEC-6(IR), but not non-activated MSC-CM, dramatically improved intestinal damage and survival of irradiated rats. Such benefits may involve the modulation of epithelial regeneration and inflammation, as indicated by the regeneration of intestinal epithelial/stem cells, the regulation of the pro-/anti-inflammatory cytokine balance. The mechanism for the superior paracrine efficacy of MSCIEC-6(IR) is related to a higher secretion of regenerative, immunomodulatory and trafficking molecules, including the pivotal factor IGF-1, induced by TNF-α, IL-1β and nitric oxide partially via a heme oxygenase-1 dependent mechanism. Together, our findings suggest that pre-activation of MSCs with TNF-α, IL-1β and nitric oxide enhances its paracine effects on RIII via a heme oxygenase-1 dependent mechanism, which may help us to maximize the paracrine potential of MSCs.
Novel 3D-printable hydrogels with host–guest non-covalent interactions and covalently crosslinked networks show robust mechanical strength, self-healing performance and excellent biocompatibility.
It is still a challenge to achieve both excellent mechanical strength and biocompatibility in hydrogels. In this study, we exploited two interactions to form a novel biocompatible, slicing-resistant, and self-healing hydrogel. The first was molecular host-guest recognition between a host (isocyanatoethyl acrylate modified β-cyclodextrin) and a guest (2-(2-(2-(2-(adamantyl-1-oxy)ethoxy)ethoxy)ethoxy)ethanol acrylate) to form "three-arm" host-guest supramolecules (HGSMs), and the second was covalent bonding between HGSMs (achieved by UV-initiated polymerization) to form strong cross-links in the hydrogel. The host-guest interaction enabled the hydrogel to rapidly self-heal. When it was cut, fresh surfaces were formed with dangling host and guest molecules (due to the breaking of host-guest recognition), which rapidly recognized each other again to heal the hydrogel by recombination of the cut surfaces. The smart hydrogels hold promise for use as biomaterials for soft-tissue repair.
Mitochondrial diseases are maternally inherited heterogeneous disorders that are primarily caused by mitochondrial DNA (mtDNA) mutations. Depending on the ratio of mutant to wild-type mtDNA, known as heteroplasmy, mitochondrial defects can result in a wide spectrum of clinical manifestations. Mitochondria-targeted endonucleases provide an alternative avenue for treating mitochondrial disorders via targeted destruction of the mutant mtDNA and induction of heteroplasmic shifting. Here, we generated mitochondrial disease patient-specific induced pluripotent stem cells (MiPSCs) that harbored a high proportion of m.3243A>G mtDNA mutations and caused mitochondrial encephalomyopathy and stroke-like episodes (MELAS). We engineered mitochondrial-targeted transcription activator-like effector nucleases (mitoTALENs) and successfully eliminated the m.3243A>G mutation in MiPSCs. Off-target mutagenesis was not detected in the targeted MiPSC clones. Utilizing a dual fluorescence iPSC reporter cell line expressing a 3243G mutant mtDNA sequence in the nuclear genome, mitoTALENs displayed a significantly limited ability to target the nuclear genome compared with nuclear-localized TALENs. Moreover, genetically rescued MiPSCs displayed normal mitochondrial respiration and energy production. Moreover, neuronal progenitor cells differentiated from the rescued MiPSCs also demonstrated normal metabolic profiles. Furthermore, we successfully achieved reduction in the human m.3243A>G mtDNA mutation in porcine oocytes via injection of mitoTALEN mRNA. Our study shows the great potential for using mitoTALENs for specific targeting of mutant mtDNA both in iPSCs and mammalian oocytes, which not only provides a new avenue for studying mitochondrial biology and disease but also suggests a potential therapeutic approach for the treatment of mitochondrial disease, as well as the prevention of germline transmission of mutant mtDNA.Electronic supplementary materialThe online version of this article (10.1007/s13238-017-0499-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.