Mesona procumbens is a popular material used in foods and herbal medicines in Asia for clearing heat and resolving toxins. However, phytochemical research on this plant is very rare. In this study, eleven new diterpenoids, mesonols A-K (1–11), comprising seven ent-kauranes, three ent-atisanes, and one sarcopetalane, were isolated from its methanolic extract. Structural elucidation of compounds 1–11 was performed by spectroscopic methods, especially 2D NMR, HRESIMS, and X-ray crystallographic analysis. All isolates were assessed for their antiproliferative activity, and compounds 1–4 showed potential antiproliferative activities against A549, Hep-3B, PC-3, HT29, and U937 cancer cells, with IC50 values ranging from 1.97 to 19.86 µM. The most active compounds, 1 and 2, were selected for further investigation of their effects on cell cycle progression, apoptosis, and ROS generation in U937 human leukemia cancer cells. Interestingly, it was found that compounds 1 and 2 induced antiproliferative effects in U937 cells through different mechanisms. Compound 1 caused cell cycle arrest at the G2/M phase and subsequent cell death in a dose- and time-dependent manner. However, 2-mediated antiproliferation of U937 cells triggered ROS-mediated mitochondrial-dependent apoptosis. These results provide insight into the molecular mechanism involved in the antiproliferative activities of compounds 1 and 2 in U937 cells. Altogether, the study showed that new diterpenoid compounds 1 and 2 from M. procumbens are potent and promising anticancer agents.
Hybrid natural products produced via mixed biosynthetic pathways are unique and often surprise one with unexpected medicinal properties in addition to their fascinating structural complexity/diversity. In view of chemical structures, hybridization is a way of diversifying natural products usually through dimerization of two similar or dissimilar subcomponents through a C–C or N–C covalent linkage. Here, we report four structurally attractive diterpene–alkaloid conjugates polyalongarins A–D (1–4), clerodane-containing aporphine and proaporphine alkaloids, the first of its kind from the barks of Taiwanese Polyalthia longifolia (Sonn.) Thwaites var. pendula. In addition to conventional spectroscopic analysis, single crystal X-ray crystallography was employed to determine the chemical structures and stereo-configurations of 1. Compounds 1–4 were subsequently subjected to in vitro antiviral examination against DENV2 by evaluating the expression level of the NS2B protein in DENV2-infected Huh-7 cells. These compounds display encouraging anti-DENV2 activity with superb EC50 (2.8–6.4 μM) and CC50 values (50.4–200 μM). The inhibitory mechanism of 1–4 on NS2B was further explored drawing on in-silico molecular docking analysis. Based on calculated binding affinities and predicted interactions between the functional groups of 1–4 and the allosteric-site residues of the DENV2 NS2B-NS3 protease, our analysis concludes that the clerodane–aporphine/proaporphine-type hybrids are novel and effective DENV NS2B-NS3 protease inhibitors.
Mesonaprocumbens Hemsley is a plant conventionally processed to provide popular food materials and herbal medicines in Asia. In this study, six triterpene acids, including five new ones (mesonaic acids D-H, 1–5), and one proximadiol-type sesquiterpene (7) were isolated from the methanolic extract of the air-dried M. procumbens. Chemical structures of 1‒7 were established by spectroscopic methods, especially 2D NMR techniques (1H–1H COSY, HSQC, HMBC, and NOESY) and HRESIMS. Concerning their biological activities, compounds 1, 2, 6, and 7 were examined manifesting high inhibition toward the pro-inflammatory NO production with EC50 values ranging from 12.88 to 21.21 µM, outrunning the positive control quercetin (24.12 µM). The mesoeudesmol B (7) identified from M. procumbens is the very first example, which exhibited high anti-inflammatory activity diminishing the level of the lipopolysaccharide-induced NO in RAW264.7 macrophage cells, thereby suppressing the secretion of pro-inflammatory cytokines TNF-α and IL-6 and the level of two critical downstream inflammatory mediators iNOS and COX-2.
The spirohydantoin-containing cucurbitane-type triterpenoid, kaguacidine A (1), was isolated and purified from 95% ethanol extracts of vines of Momordica charantia L (Cucurbitaceae). Its unprecedented chemical structure, a spirohydantoin substituent at C-23 of cucurbitane, was elucidated by extensive spectroscopic analyses, including HRESIMS, IR, optical rotation, 1D-and 2D-NMR spectra. The possible biosynthetic pathway is deduced and may be attributed to the metabolic activity of microbial symbionts in M. charantia L. Compound 1 was evaluated for anti-inflammatory activity against LPS-induced NO production in RAW 264.7 cells and anti-proliferative activity against four cancer cell lines, including HEp-2, MCF-7, Hep-G2, and WiDr. Compound 1 showed moderate anti-inflammatory activity with an IC50 value of 18.5 ± 0.4 μg/mL and weak anti-proliferative activity against MCF-7, HEp-2, Hep-G2, and WiDr with IC50 values of >40,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.