Carbon nanotube (CNT)-based materials have attracted tremendous interest for their high performance in oil separation. However, the preparation of CNT based materials always require harmful and expensive chemicals. Here, a biological assembly route was applied to assemble CNTs onto a fungal hyphae (FH) to produce FH/CNTs composites, followed by pyrolysis to obtain a hydrophobic CNT based aerogel for oil separation, which is a more environmentally friendly process. The as-prepared FH/CNTs-800 aerogel (pyrolyzed at 800 °C) showed hydrophobicity with a water contact angle of 143° and high specific surface area (1041.2 m2 g−1). The oil absorption results showed that the as-prepared FH/CNTs aerogels could absorb a wide range of oils with high absorption capacities ranging from 48 to 138 times their own weight. Furthermore, the oil-loaded aerogel was recycled through burning with little reduction in the oil absorption capacity. In addition, FH/CNTs-800 provided a high specific capacitance of 232 F g−1 at 1 A g−1 and maintained a capacity retention of 70.62% at 20 A g−1. Therefore, this study offers a simple, low-cost and environmentally friendly bioassembly route for large-scale assembly of CNTs into macroscopic 3D hydrophobic aerogels for highly efficient water-oil separation.
Photoreduction of soluble hexavalent uranium to insoluble tetravalent uranium U(IV) is a promising strategy to achieve effective uranium extraction from radioactive wastewater. Herein, ZnO nanoparticles (ZnO NPs) with an abundance...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.