The spin reorientation transition of an ultrathin film from perpendicular to in-plane magnetization is driven by a competition between dipole and anisotropy energies. In situ measurements of the magnetic susceptibility of Fe/2 ML Ni/W(110) films as a function of Fe coverage, made as the films are deposited at constant temperature, show two clear peaks; one at the long-range and one at the local realization of the transition. In the long-range realization, the susceptibility probes the striped domain pattern that is formed in response to the balance of energetics on a mesoscopic scale. Here the reorientation transition occurs at a non-integer layer thickness. In the local realization, the susceptibility probes the response of small islands with in-plane anisotropy in the 3rd atomic Fe layer that are grown on the 2nd atomic Fe layer, which has perpendicular anisotropy. It is a response to the local finite-size, metastable energetics due to discrete steps in thickness. An excellent quantitative description of the susceptibility data is obtained when both local and long-range aspects of the spin reorientation transition are included.
The influence of long-range dipole interactions on two dimensional magnetism has been studied extensively in the spin-reorientation transition of ferromagnetic ultrathin films. Although there is a great deal of experimental information on the perpendicular domain phase that is stabilized by dipole interactions, the transitions to or from the domain phase are subtle and difficult to characterize experimentally. Magnetic susceptibility measurements show no divergence in the vicinity of the spin-reorientation transition as a function of thickness -a null result that is difficult to interpret with confidence. This article reports separate dynamical and equilibrium versions of the reorientation transition in Fe/2ML Ni/W(110) films, using measurements of the magnetic susceptibility as the films are grown. The dynamical version occurs when increasing the film thickness causes the domain walls to depin, and the system moves from a configuration that minimizes local energetics to one that minimizes global energetics. The dynamical transition is marked by a divergent magnetic susceptibility measured with a field applied along the in-plane W[001] direction. A comparative study of the two versions of the same spin-reorientation transition aids in the experimental characterization of the effects of dipole interactions on the phase transitions. This comparison confirms the original null result found in magnetic susceptibility measurements of the equilibrium transition; despite its name, the spin-reorientation transition in ferromagnetic ultrathin films has no critical phase transition in either the magnetization or its orientation. arXiv:1807.11434v2 [cond-mat.mtrl-sci]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.