The spin reorientation transition of an ultrathin film from perpendicular to in-plane magnetization is driven by a competition between dipole and anisotropy energies. In situ measurements of the magnetic susceptibility of Fe/2 ML Ni/W(110) films as a function of Fe coverage, made as the films are deposited at constant temperature, show two clear peaks; one at the long-range and one at the local realization of the transition. In the long-range realization, the susceptibility probes the striped domain pattern that is formed in response to the balance of energetics on a mesoscopic scale. Here the reorientation transition occurs at a non-integer layer thickness. In the local realization, the susceptibility probes the response of small islands with in-plane anisotropy in the 3rd atomic Fe layer that are grown on the 2nd atomic Fe layer, which has perpendicular anisotropy. It is a response to the local finite-size, metastable energetics due to discrete steps in thickness. An excellent quantitative description of the susceptibility data is obtained when both local and long-range aspects of the spin reorientation transition are included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.