Introduction Italy became the second epicenter of the novel coronavirus disease 2019 (COVID-19) pandemic after China, surpassing by far China’s death toll. The disease swept through Lombardy, which remained in lockdown for about two months, starting from the 8th of March. As of that day, the isolation measures taken in Lombardy were extended to the entire country. Here, assuming that effectively there was one case “zero” that introduced the virus to the region, we provide estimates for: (a) the day-zero of the outbreak in Lombardy, Italy; (b) the actual number of asymptomatic infected cases in the total population until March 8; (c) the basic ( R 0 )and the effective reproduction number ( R e ) based on the estimation of the actual number of infected cases. To demonstrate the efficiency of the model and approach, we also provide a tentative forecast two months ahead of time, i.e. until May 4, the date on which relaxation of the measures commenced, on the basis of the COVID-19 Community Mobility Reports released by Google on March 29. Methods To deal with the uncertainty in the number of the actual asymptomatic infected cases in the total population Volpert et al. (2020), we address a modified compartmental Susceptible/ Exposed/ Infectious Asymptomatic/ Infected Symptomatic/ Recovered/ Dead (SEIIRD) model with two compartments of infectious persons: one modelling the cases in the population that are asymptomatic or experience very mild symptoms and another modelling the infected cases with mild to severe symptoms. The parameters of the model corresponding to the recovery period, the time from the onset of symptoms to death and the time from exposure to the time that an individual starts to be infectious, have been set as reported from clinical studies on COVID-19. For the estimation of the day-zero of the outbreak in Lombardy, as well as of the “effective” per-day transmission rate for which no clinical data are available, we have used the proposed SEIIRD simulator to fit the numbers of new daily cases from February 21 to the 8th of March. This was accomplished by solving a mixed-integer optimization problem. Based on the computed parameters, we also provide an estimation of the basic reproduction number R 0 and the evolution of the effective reproduction number R e . To examine the efficiency of the model and approach, we ran the simulator to “forecast” the epidemic two months ahead of time, i.e. from March 8 to May 4. For this purpose, we considered the reduction in mobility in Lombardy as released on March 29 by Google COVID-19 Community Mobility Reports, and the effects of social distancing and of the very strict measures taken by the government on March 20 and March 21, 2020. Results Based on the proposed methodological procedure, we estimated that the expected...
In this paper a car-following model is formulated as a time-continuous dynamic process, depending on two parameters and two inputs. One of these inputs is the follower’s desired equilibrium spacing, assumed to exist and to be known. Another input is the speed of the lead vehicle. Given the formulation of the model, the contribution of these two inputs is separable from an analytical point of view. The proposed model is simple enough (whereas not being simplistic) to support real-time applications in the field of advanced driving assistance systems. Starting from the equilibrium spacing, it is possible to estimate the parameters of the model, allowing for a full identification procedure. The modeling framework was prevalidated against observed data from two different data sets, collected by means of two instrumented vehicles in independent experiments, carried out in Italy and the United Kingdom. The validation proved that the proposed car-following model gives good results not only around the desired equilibrium spacing but also in general car-following conditions. The experimental data sets are discussed in terms of parameter values as well as performance of the dynamic process against observed data.
Abstract:Reduction of the environmental impact of cars represents one of the biggest transport industry challenges. Beyond more efficient engines, a promising approach is to use eco-driving technologies that help drivers achieve lower fuel consumption and emission levels. In this study, a real-time microscopic fuel consumption model was developed. It was designed to be integrated into simulation platforms for the design and testing of Advanced Driving Assistance Systems (ADAS), aimed at keeping the vehicle within the environmentally friendly driving zone and hence reducing harmful exhaust gases. To allow integration in platforms employed at early stages of ADAS development and testing, the model was kept very simple and dependent on a few easily computable variables. To show the feasibility of the identification of the model (and to validate it), a large experiment involving more than 100 drivers and about 8000 km of driving was carried out using an instrumented vehicle. An instantaneous model was identified based on vehicle speed, acceleration level and gas pedal excursion, applicable in an extra-urban traffic context. Both instantaneous and aggregate validation was performed and the model was shown to estimate vehicle fuel consumption consistently with in-field instantaneous measurements. Very accurate estimations were also shown for the aggregate consumption of each driving session.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.