Children are more sensitive to pollutants than adults and yet they spend large amounts of time in school environments where they are exposed to unknown levels of indoor pollutants. This study investigated the concentrations of the most abundant volatile organic compounds (VOCs) in eight naturally ventilated school buildings in Italy. The schools were chosen to include areas with different urbanization and traffic density characteristics in order to gather a more diverse picture of exposure risks in the different areas of the city. VOCs were sampled for one week in the presence/absence of pupils using diffusive samplers suitable for thermal desorption inside three classrooms at each school. The samples were then analyzed with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). In addition, outdoor measurements were carried out in the yard at each school. VOC identification and quantification, and indoor/outdoor concentration plots were used to identify pollutant sources. While some classrooms were found to have very low VOC levels, others had a significant indoor contribution or a prevalent outdoor contribution. High concentrations of terpenes were found in all monitored classrooms: α-pinene and limonene were in the range of 6.55–34.18 µg/m3 and 11.11–25.42 µg/m3 respectively. Outdoor concentrations were lower than indoors for each monitored school. Indicators based on health risk assessment for chronic health effects associated with VOCs (either carcinogenic or non-carcinogenic) were proposed to rank sites according to their hazard level.
Children spend a large amount of time in school environments and when Indoor Air Quality (IAQ) is poor, comfort, productivity and learning performances may be affected. The aim of the present study is to characterize IAQ in a primary school located in Taranto city (south of Italy). Because of the proximity of a large industrial complex to the urban settlement, this district is one of the areas identified as being at high environmental risk in Italy. The study carried out simultaneous monitoring of indoor and outdoor Volatile Organic Compounds (VOC) concentrations and assessed different pollutants' contributions on the IAQ of the investigated site. A screening study of VOC and determination of Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), sampled with Radiello ® diffusive samplers suitable for thermal desorption, were carried out in three classrooms, in the corridor and in the yard of the school building. Simultaneously, Total VOC (TVOC) concentration was measured by means of real-time monitoring, in order to study the activation of sources during the monitored days. The analysis results showed a prevalent indoor contribution for all VOC except for BTEX which presented similar concentrations in indoor and outdoor air. Among the determined VOC, Terpenes and 2-butohxyethanol were shown to be an indoor source, the latter being the indoor pollutant with the highest concentration.
This study aims to investigate the air quality in primary school placed in district of Taranto (south of Italy), an area of high environmental risk because of closeness between large industrial complex and urban settlement. The chemical characterization of PM2.5 was performed to identify origin of pollutants detected inside school and the comparison between indoor and outdoor levels of PAHs and metals allowed evaluating intrusion of outdoor pollutants or the existence of specific indoor sources. The results showed that the indoor and outdoor levels of PM2.5, BaP, Cd, Ni, As, and Pb never exceeded the target values issued by World Health Organization (WHO). Nevertheless, high metals and PAHs concentrations were detected especially when school were downwind to the steel plant. The / ratio showed the impact of outdoor pollutants, especially of industrial markers as Fe, Mn, Zn, and Pb, on indoor air quality. This result was confirmed by values of diagnostic ratio as B(a)P/B(g)P, IP/(IP + BgP), BaP/Chry, and BaP/(BaP + Chry), which showed range characteristics of coke and coal combustion. However, Ni and As showed / ratio of 2.5 and 1.4, respectively, suggesting the presence of indoor sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.