Stomata are ports that facilitate gas and water vapor exchange between plants and their environment. Stomatal development is strictly regulated by endogenous signals and environmental cues. Jasmonate is an important signal that modulates multiple physiological processes in plants, yet the molecular mechanisms underlying its interactions with other developmental signaling pathways remain poorly understood. Here, we show that jasmonate negatively regulates stomatal development in Arabidopsis () cotyledons. Cotyledons of the wild type and stomata-overproliferating mutants (such as and) treated with methyl jasmonate exhibit a clear reduction in stomata number. By contrast, blocking endogenous jasmonate biosynthesis or perception enhanced stomatal development. Moreover, three MYC transcription factors involved in jasmonate signaling, MYC2, MYC3, and MYC4, were found to redundantly modulate jasmonate-inhibited stomatal development. A genetic analysis showed that these MYC proteins act upstream of the SPEECHLESS and FAMA transcription factors to mediate stomatal development. Furthermore, jasmonate repression of stomatal development is dependent on these three MYC transcription factors, as stomatal development of the triple mutant was insensitive to methyl jasmonate treatment. Collectively, our study demonstrates that jasmonate and MYC transcription factors negatively regulate stomatal development in Arabidopsis cotyledons.
The ethylene precursor aminocyclopropane-1-carboxylic acid (ACC) positively regulates the symmetric division of stomatal guard mother cells in a manner that is dependent on CDKB1s and CYCA2s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.