a b s t r a c tSmall and medium-sized commercial buildings can be retrofitted to significantly reduce their energy use, however it is a huge challenge as owners usually lack of the expertise and resources to conduct detailed on-site energy audit to identify and evaluate cost-effective energy technologies. This study presents a DEEP (database of energy efficiency performance) that provides a direct resource for quick retrofit analysis of commercial buildings. DEEP, compiled from the results of about ten million EnergyPlus simulations, enables an easy screening of ECMs (energy conservation measures) and retrofit analysis. The simulations utilize prototype models representative of small and mid-size offices and retails in California climates. In the formulation of DEEP, large scale EnergyPlus simulations were conducted on high performance computing clusters to evaluate hundreds of individual and packaged ECMs covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and service hot water. The architecture and simulation environment to create DEEP is flexible and can expand to cover additional building types, additional climates, and new ECMs. In this study DEEP is integrated into a web-based retrofit toolkit, the Commercial Building Energy Saver, which provides a platform for energy retrofit decision making by querying DEEP and unearthing recommended ECMs, their estimated energy savings and financial payback.
Abstract. Model checking of safety properties can be scaled up by pooling the CPU and memory resources of multiple computers. As compute clusters containing 100s of nodes, with each node realized using multicore (e.g., 2) CPUs will be widespread, a model checker based on the parallel (shared memory) and distributed (message passing) paradigms will more efficiently use the hardware resources. Such a model checker can be designed by having each node employ two shared memory threads that run on the (typically) two CPUs of a node, with one thread responsible for state generation, and the other for efficient communication, including (i) performing overlapped asynchronous message passing, and (ii) aggregating the states to be sent into larger chunks in order to improve communication network utilization. We present the design details of such a novel model checking architecture called Eddy. We describe the design rationale, details of how the threads interact and yield control, exchange messages, as well as detect termination. We have realized an instance of this architecture for the Murphi modeling language. Called Eddy Murphi, we report its performance over the number of nodes as well as communication parameters such as those controlling state aggregation. Nearly linear reduction of compute time with increasing number of nodes is observed. Our thread task partition is done in such a way that it is modular, easy to port across different modeling languages, and easy to tune across a variety of platforms.
No abstract
Programs written for GPUs often contain correctness errors such as races, deadlocks, or may compute the wrong result. Existing debugging tools often miss these errors because of their limited input-space and execution-space exploration. Existing tools based on conservative static analysis or conservative modeling of SIMD concurrency generate false alarms resulting in wasted bug-hunting. They also often do not target performance bugs (non-coalesced memory accesses, memory bank conflicts, and divergent warps). We provide a new framework called GKLEE that can analyze C++ GPU programs, locating the aforesaid correctness and performance bugs. For these programs, GKLEE can also automatically generate tests that provide high coverage. These tests serve as concrete witnesses for every reported bug. They can also be used for downstream debugging, for example to test the kernel on the actual hardware. We describe the architecture of GKLEE, its symbolic virtual machine model, and describe previously unknown bugs and performance issues that it detected on commercial SDK kernels. We describe GKLEE's test-case reduction heuristics, and the resulting scalability improvement for a given coverage target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.