BackgroundBlood–brain barrier (BBB) disruption has been noted in animal models of Parkinson’s disease (PD) and forms the basis of the vascular hypothesis of neurodegeneration, yet clinical studies are lacking.ObjectiveTo determine alterations in BBB integrity in PD, with comparison to cerebrovascular disease.MethodsDynamic contrast enhanced magnetic resonance images were collected from 49 PD patients, 15 control subjects with cerebrovascular disease [control positive (CP)] and 31 healthy control subjects [control negative (CN)], with all groups matched for age. Quantitative maps of the contrast agent transfer coefficient across the BBB (Ktrans) and plasma volume (vp) were produced using Patlak analysis. Differences in Ktrans and vp were assessed with voxel-based analysis as well as in regions associated with PD pathophysiology. In addition, the volume of white matter lesions (WMLs) was obtained from T2-weighted fluid attenuation inversion recovery (FLAIR) images.ResultsHigher Ktrans, reflecting higher BBB leakage, was found in the PD group than in the CN group using voxel-based analysis; differences were most prominent in the posterior white matter regions. Region of interest analysis confirmed Ktrans to be significantly higher in PD than in CN, predominantly driven by differences in the substantia nigra, normal-appearing white matter, WML and the posterior cortex. WML volume was significantly higher in PD compared to CN. Ktrans values and WML volume were similar in PD and CP, suggesting a similar burden of cerebrovascular disease despite lower cardiovascular risk factors.ConclusionThese results show BBB disruption in PD.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The effects of Alzheimer's disease (AD) and ageing on blood-brain barrier (BBB) breakdown are investigated in TgF344-AD and wild-type rats aged 13, 18 and 21 months. Permeability surface area products of the BBB to water (PS w ) and gadolinium-based contrast agent (PS g ) were measured in grey matter using multiflip angle multiecho dynamic contrast-enhanced MRI. At 13 months of age, there was no significant difference in PS w between TgF344-AD and wild-types (p = 0.82). Between 13 and 18 months, PS w increased in TgF344-AD rats (p = 0.027), but not in wildtypes (p = 0.99), leading to significantly higher PS w in TgF344-AD rats at 18 months, as previously reported (p = 0.012). Between 18 and 21 months, PS w values increased in wild-types (p = 0.050), but not in TgF344-AD rats (p = 0.50). These results indicate that BBB water permeability is affected by both AD pathology and ageing, but that changes occur earlier in the presence of AD pathology. There were no significant genotype or ageing effects on PS g (p > 0.05). In conclusion, we detected increases in BBB water permeability with age in TgF344-AD and wild-type rats, and found that changes occurred at an earlier age in rats with AD pathology.
doi: medRxiv preprint NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.