For routine H isotope analyses, with proper sample pre-treatment, we show that the Comparative Equilibration approach can provide accurate and reproducible non-exchangeable δ H values among laboratories regardless of the reactor type used. © 2017 Her Majesty the Queen in Right of Canada Rapid Communications in Mass Spectrometry © 2017 John Wiley & Sons Ltd. Reproduced with the permission of the Environment and Climate Change Canada.
Few studies have used the stable isotopic composition of O(2) as a tracer of gas transport or biogeochemical processes in environmental research. Here we demonstrate field sampling techniques for gaseous and dissolved O(2) and describe an analytical method for measuring δ(18)O and δ(17)O values of O(2) in air, soil gas, and water samples using continuous-flow isotope-ratio mass spectrometry (CF-IRMS). A Micromass CF-IRMS was altered to accommodate a sample gas injection port prior to a CO(2) and H(2)O trap and GC column. The GC column was a 1-m, 5-Å molecular sieve column held at 35 °C. The resolved sample O(2) was introduced to the IRMS via an open split. δ(18)O and δ(17)O values were determined by measurement of O(2) isotopes at m/z 34/32 and 33/32 and comparison to a reference pulse of O(2). Repeated injections of atmospheric oxygen yielded a repeatability (±SD) of ±0.17‰ for δ(18)O and ±0.5‰ for δ(17)O. IRMS source linearity was excellent for O(2) over a sample size range of 60-400 μL. The smallest sample for routine δ(18)O and δ(17)O determinations was ∼80 μL of O(2), with a sample analysis time of 180 s. Preliminary results from a riverine and soil gas study illustrate natural oxygen isotope fractionation processes.
Tracking migratory animals has benefitted using measurements of naturally occurring stable isotopes of hydrogen (δ2H) in keratinous tissues such as hair and feathers to link animal origins to continental patterns or isoscapes of δ2H in precipitation. However, for most taxa, much less information exists on the use of stable oxygen isotope ratios (δ18O) despite the fact that δ2H and δ18O are strongly linked in environmental waters through the meteoric relationship and the possibility of using both isotopes to infer greater information on origins and climatic conditions where tissues are grown. A fundamental requirement of using stable isotopes to assign individuals and populations to origins is the development of a rescaling function linking environmental food web signals to the tissue of interest and for birds, this has not been carried out. Here, we derived the relationship between H and O isotopes in known source feathers of 104 individuals representing 11 species of insectivorous passerines sampled across the strong precipitation isoscape of North America. We determined again a strong expected relationship between feather δ2H (δ2Hf) and long-term amount-weighted precipitation δ2H (δ2Hp; r2 = 0.77), but the corresponding relationship between δ18Of and δ18Op was poor (r2 = 0.32) for the same samples. This suggests that δ2H measurements are currently more useful for assignment of insectivorous songbirds to precipitation isoscapes but does not preclude other uses of the δ18Of data. Currently, mechanisms responsible for the decoupling of H and O isotopes in food webs is poorly known, and we advocate a much broader sampling of both isotopes in the same keratinous tissues across precipitation isotope gradients and across taxa to resolve this issue and to increase the power of using water isotopes to track migratory animals.
The measurement of naturally occurring stable hydrogen (δ 2 H) and carbon (δ 13 C) isotopes in wings of the eastern North American monarch butterflies (Danaus plexippus) have proven useful to infer natal origins of individuals overwintering in Mexico. This approach has provided a breakthrough for monarch conservation because it is the only viable means of inferring origins at continental scales. Recently, routine simultaneous analyses of tissue δ 2 H and δ 18 O of organic materials has emerged leading to questions of whether the dual measurement of these isotopes could be used to more accurately infer spatial origins even though the two isotopes are expected to be coupled due to the meteoric relationship. Such refinement would potentially increase the accuracy of isotopic assignment of wintering monarchs to natal origin. We measured a sample of 150 known natal-origin monarchs from throughout their eastern range simultaneously for both δ 2 H and δ 18 O wing values. Wing δ 2 H and δ 18 O values were correlated (r 2 = 0.42). We found that wing δ 2 H values were more closely correlated with amount-weighted growing season average precipitation δ 2 H values predicted for natal sites (r 2 = 0.61) compared to the relationship between wing δ 18 O values and amount-weighted growing season average precipitation δ 18 O values (r 2 = 0.30). This suggests that monarch wing δ 2 H values will be generally more useful in natal assignments than δ 18 O values. Spatial information related to the use of deuterium excess in environmental waters was similarly found to be not useful when applied to monarch wings likely due to the considerable variance in wing δ 18 O values. Nonetheless, we recommend further testing of monarch wing δ 2 H and δ 18 O values from known natal sites with an emphasis on field data across a strong gradient in precipitation deuterium excess.
Concepts and terms used in previous multidisciplinary studies of tile-drained aquitard-dominated catchments (TDADC) are inconsistent and confusing. We provide a well-defined, comprehensive conceptual model of the subsurface hydrology of TDADC by selecting seven mutually compatible and consistent concepts. These concepts are: (1) groundwater as the main source of baseflow in headwater streams,(2) dominance of 'pre-event' water in stormflow, (3) importance of both macropores and matrix, (4) changes in flowpaths with rate of stream discharge, (5) dominance of shallow, lateral subsurface flow, (6) interactive nature of subsurface water, (7) transpiration of groundwater. This conceptual model was successfully 'field-tested' by examining data collected in a TDADC in a rural area of southern Ontario, Canada.The data consist mainly of chemical and isotopes tracers in water samples (headwater streams, groundwater, precipitation, tile water, soil-surface water), supplemented by water levels and meteorological data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.