Stable isotopes are being increasingly used in wildlife forensics as means of determining the origin and movement of animals. The heavy isotope content of precipitated water and snow (deltaD(p), delta(18)O(p)) varies widely and systematically across the globe, providing a label that is incorporated through diet into animal tissue. As a result, these isotopes are potentially ideal tracers of geographic origin. The hydrogen and oxygen isotope tracer method has excellent potential where (1) spatial variation of precipitation isotopes exist, and (2) strong, mechanistic relationships link precipitation and isotope ratios in biological tissue. Here, we present a method for interpolation of precipitation isotope values and use it to create global basemaps of growing-season (GS) and mean annual (MA) deltaD(p) and delta(18)O(p). The use of these maps for forensic application is demonstrated using previously published isotope data for bird feathers (deltaD(f)) in North America and Europe. The precipitation maps show that the greatest potential for applying hydrogen and oxygen isotope forensics exists in mid- to high-latitude continental regions, where strong spatial isotope gradients exist. We demonstrate that deltaD(f)/deltaD(p) relationships have significant predictive power both in North America and Europe, and show how zones of confidence for the assignment of origin can be described using these predictive relationships. Our analysis focuses on wildlife forensics, but the maps and approaches presented here will be equally applicable to criminal forensic studies involving biological materials. These maps are available in GIS format at http://www.waterisotopes.org.
Stable hydrogen-isotope ratios (deltaD) of keratin provide a novel means for tracking geographical movements of birds and other species. Here we describe a rapid, low cost, analytical approach to facilitate online continuous-flow isotope-ratio mass spectrometry (CF-IRMS) deltaD analyses of keratins (120-160 samples per day) through the use of calibrated keratin working standards and "comparative equilibration" to correct for the effects of moisture on exchangeable hydrogen. It is anticipated that this analytical approach and CF-IRMS will greatly aid in providing cost effective and directly comparable deltaD results on keratins and feathers among various laboratories and researchers involved in animal migration studies.
Recent studies have shown that stable hydrogen isotope ratios (δD) in the tissues of animals often correlate with δD of local precipitation. Here we examined the relationship between δD in feathers and growing season precipitation for neotropical migrant songbirds breeding over a continent-wide isotopic gradient. δD values were determined on feathers of 140 individuals of 6 species of wild insectivorous forest songbirds (Setophaga ruticilla, Empidonax minimus, Vermivora peregrinus, Catharus ustulatus, Seiurus aurocapillus, Hylocichla mustelina) taken from 14 breeding locations across North America. The δD of feathers was strongly correlated with the δD of growing season precipitation at breeding sites across North America. As feather hydrogen is metabolically inert after growth, this relationship was then used to assess the breeding origins of wintering migrants. Deuterium values of feathers from 64 individuals representing 5 species of migrants (Helmitheros vermivorus, Wilsonia citrina, Hylocichla mustelina, Dumetella carolinensis, Seirus aurocapillus) at a wintering site in Guatemala were consistent with those predicted from the known breeding ranges of these species. This study demonstrates hydrogen isotopes may become a powerful tool for linking breeding and wintering grounds of neotropical migrant songbirds, as well as other migratory species moving between isotopically distinct regions.
Newly available gas analyzers based on off-axis integrated cavity output spectroscopy (OA-ICOS) lasers have been advocated as an alternative to conventional isotope-ratio mass spectrometers (IRMS) for the stable isotopic analysis of water samples. In the case of H2O, OA-ICOS is attractive because it has comparatively low capital and maintenance costs, the instrument is small and field laboratory portable, and provides simultaneous D/H and 16O/18O ratio measurements directly on H2O molecules with no conversion of H2O to H2, CO, or H2/CO2-water equilibration required. Here we present a detailed assessment of the performance of a liquid-water isotope analyzer, including instrument precision, estimates of sample memory and sample mass effects, and instrumental drift. We provide a recommended analysis procedure to achieve optimum results using OA-ICOS. Our results show that, by using a systematic sample analysis and data normalization procedure routine, measurement accuracies of +/-0.8 per thousand for deltaD and +/-0.1 per thousand delta18O are achievable on nanoliter water samples. This is equivalent or better than current IRMS-based methods and at a comparable sample throughput rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.