We present an algorithm that can anticipate tax evasion by modeling the co-evolution of tax schemes with auditing policies. Malicious tax non-compliance, or evasion, accounts for billions of lost revenue each year. Unfortunately when tax administrators change the tax laws or auditing procedures to eliminate known fraudulent schemes another potentially more profitable scheme takes it place. Modeling both the tax schemes and auditing policies within a single framework can therefore provide major advantages. In particular we can explore the likely forms of tax schemes in response to changes in audit policies. This can serve as an early warning system to help focus enforcement efforts. In addition, the audit policies can be fine tuned to help improve tax scheme detection. We demonstrate our approach using the iBOB tax scheme and show it can capture the co-evolution between tax evasion and audit policy. Our experiments shows the expected oscillatory behavior of a biological co-evolving system.
We detect tax law abuse by simulating the co-evolution of tax evasion schemes and their discovery through audits. Tax evasion accounts for billions of dollars of lost income each year. When the IRS pursues a tax evasion scheme and changes the tax law or audit procedures, the tax evasion schemes evolve and change into undetectable forms. The arms race between tax evasion schemes and tax authorities presents a serious compliance challenge. Tax evasion schemes are sequences of transactions where each transaction is individually compliant. However, when all transactions are combined they have no other purpose than to evade tax and are thus non-compliant. Our method consists of an ownership network and a sequence of transactions, which outputs the likelihood of conducting an audit, and requires no prior tax return or audit data. We adjust audit procedures for a new generation of evolved tax evasion schemes by simulating the gradual change of tax evasion schemes and audit points, i.e. methods used for detecting non-compliance. Additionally, we identify, for a given audit scoring procedure, which tax evasion schemes will likely escape auditing. The approach is demonstrated in the context of partnership tax law and the Installment Bogus Optional Basis tax evasion scheme. The experiments show the oscillatory behavior of a co-adapting system and that it can model the co-evolution of tax evasion schemes and their detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.