Malware is constantly adapting in order to avoid detection. Model based malware detectors, such as SVM and neural networks, are vulnerable to so-called adversarial examples which are modest changes to detectable malware that allows the resulting malware to evade detection. Continuous-valued methods that are robust to adversarial examples of images have been developed using saddle-point optimization formulations. We are inspired by them to develop similar methods for the discrete, e.g. binary, domain which characterizes the features of malware. A specific extra challenge of malware is that the adversarial examples must be generated in a way that preserves their malicious functionality. We introduce methods capable of generating functionally preserved adversarial malware examples in the binary domain. Using the saddle-point formulation, we incorporate the adversarial examples into the training of models that are robust to them. We evaluate the effectiveness of the methods and others in the literature on a set of Portable Execution (PE) files. Comparison prompts our introduction of an online measure computed during training to assess general expectation of robustness.
Generative adversary networks (GANs) suffer from training pathologies such as instability and mode collapse. These pathologies mainly arise from a lack of diversity in their adversarial interactions. Evolutionary generative adversarial networks apply the principles of evolutionary computation to mitigate these problems. We hybridize two of these approaches that promote training diversity. One, E-GAN, at each batch, injects mutation diversity by training the (replicated) generator with three independent objective functions then selecting the resulting best performing generator for the next batch. The other, Lipizzaner, injects population diversity by training a two-dimensional grid of GANs with a distributed evolutionary algorithm that includes neighbor exchanges of additional training adversaries, performance based selection and population-based hyper-parameter tuning. We propose to combine mutation and population approaches to diversity improvement. We contribute a superior evolutionary GANs training method, Mustangs, that eliminates the single loss function used across Lipizzaner 's grid. Instead, each training round, a loss function is selected with equal probability, from among the three E-GAN uses. Experimental analyses on standard benchmarks, MNIST and CelebA, demonstrate that Mustangs provides a statistically faster training method resulting in more accurate networks.
Publication informationInternational Journal of Design Engineering, 3 (1): 4-24 Publisher Inderscience EnterprisesLink to online version http://dx. Martin Hemberg is a post-doctoral researcher at the Department of Ophthalmology at Children's Hospital Boston. He obtained is PhD from Imperial College London and he has also worked at the Architectural Association in London. His primary research interests include matheEvolutionary design using grammatical evolution and shape grammars 3 matical and computational models of gene expression
Motivated by Danskin's theorem, gradient-based methods have been applied with empirical success to solve minimax problems that involve non-convex outer minimization and non-concave inner maximization. On the other hand, recent work has demonstrated that Evolution Strategies (ES) algorithms are stochastic gradient approximators that seek robust solutions. In this paper, we address black-box (gradient-free) minimax problems that have long been tackled in a coevolutionary setup. To this end and guaranteed by Danskin's theorem, we employ ES as a stochastic estimator for the descent direction. The proposed approach is validated on a collection of black-box minimax problems. Based on our experiments, our method's performance is comparable with its coevolutionary counterparts and favorable for high-dimensional problems. Its efficacy is demonstrated on a real-world application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.