Abstract-Recent advances in wireless technologies have given rise to the emergence of vehicular ad hoc networks (VANETs). In such networks, the limited coverage of WiFi and the high mobility of the nodes generate frequent topology changes and network fragmentations. For these reasons, and taking into account that there is no central manager entity, routing packets through the network is a challenging task. Therefore, offering an efficient routing strategy is crucial to the deployment of VANETs. This paper deals with the optimal parameter setting of the optimized link state routing (OLSR), which is a well-known mobile ad hoc network routing protocol, by defining an optimization problem. This way, a series of representative metaheuristic algorithms (particle swarm optimization, differential evolution, genetic algorithm, and simulated annealing) are studied in this paper to find automatically optimal configurations of this routing protocol. In addition, a set of realistic VANET scenarios (based in the city of Málaga) have been defined to accurately evaluate the performance of the network under our automatic OLSR. In the experiments, our tuned OLSR configurations result in better quality of service (QoS) than the standard request for comments (RFC 3626), as well as several human experts, making it amenable for utilization in VANET configurations.Index Terms-Metaheuristics, optimization algorithms, optimized link state routing (OLSR), vehicular ad hoc networks (VANET).
Generative adversary networks (GANs) suffer from training pathologies such as instability and mode collapse. These pathologies mainly arise from a lack of diversity in their adversarial interactions. Evolutionary generative adversarial networks apply the principles of evolutionary computation to mitigate these problems. We hybridize two of these approaches that promote training diversity. One, E-GAN, at each batch, injects mutation diversity by training the (replicated) generator with three independent objective functions then selecting the resulting best performing generator for the next batch. The other, Lipizzaner, injects population diversity by training a two-dimensional grid of GANs with a distributed evolutionary algorithm that includes neighbor exchanges of additional training adversaries, performance based selection and population-based hyper-parameter tuning. We propose to combine mutation and population approaches to diversity improvement. We contribute a superior evolutionary GANs training method, Mustangs, that eliminates the single loss function used across Lipizzaner 's grid. Instead, each training round, a loss function is selected with equal probability, from among the three E-GAN uses. Experimental analyses on standard benchmarks, MNIST and CelebA, demonstrate that Mustangs provides a statistically faster training method resulting in more accurate networks.
Municipal solid waste management is a major challenge for nowadays urban societies, because it accounts for a large proportion of public budget and, when mishandled, it can lead to environmental and social problems. This work focuses on the problem of locating waste bins in an urban area, which is considered to have a strong influence in the overall efficiency of the reverse logistic chain. This article contributes with an exact multiobjective approach to solve the waste bin location in which the optimization criteria that are considered are: the accessibility to the system (as quality of service measure), the investment cost, and the required frequency of waste removal from the bins (as a proxy of the posterior routing costs). In this approach, different methods to obtain the objectives ideal and nadir values over the Pareto front are proposed and compared. Then, a family of heuristic methods based on the PageRank algorithm is proposed which aims to optimize the accessibility to the system, the amount of collected waste and the installation cost. The experimental evaluation was performed on real-world scenarios of the cities of Montevideo, Uruguay, and Bahía Blanca, Argentina. The obtained results show the competitiveness of the proposed approaches for constructing a set of candidate solutions that considers the different trade-offs between the optimization criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.