In this article we address the study of parking occupancy data published by the Birmingham city council with the aim of testing several prediction strategies (polynomial fitting, Fourier series, k -means clustering, and time series) and analyzing their results. We have used cross validation to train the predictors and then tested them on unseen occupancy data. Additionally, we present a web page prototype to visualize the current and historical parking data on a map, allowing users to consult the occupancy rate forecast to satisfy their parking needs up to one day in advance. We think that the combination of accurate intelligent techniques plus final user services for citizens is the direction to follow for knowledge-based real smart cities.
Unmanned Aerial Vehicles (UAVs) have quickly become one of the promising Internet-of-Things (IoT) devices for smart cities. Thanks to their mobility, agility, and onboard sensors’ customizability, UAVs have already demonstrated immense potential for numerous commercial applications. The UAVs expansion will come at the price of a dense, high-speed and dynamic traffic prone to UAVs going rogue or deployed with malicious intent. Counter UAV systems (C-UAS) are thus required to ensure their operations are safe. Existing C-UAS, which for the majority come from the military domain, lack scalability or induce collateral damages. This paper proposes a C-UAS able to intercept and escort intruders. It relies on an autonomous defense UAV swarm, capable of self-organizing their defense formation and to intercept the malicious UAV. This fully localized and GPS-free approach follows a modular design regarding the defense phases and it uses a newly developed balanced clustering to realize the intercept- and capture-formation. The resulting networked defense UAV swarm is resilient to communication losses. Finally, a prototype UAV simulator has been implemented. Through extensive simulations, we demonstrate the feasibility and performance of our approach.
In this paper we present a surveillance system for early detection of escapers from a restricted area based on a new swarming mobility model called CROMM-MS (Chaotic Rössler Mobility Model for Multi-Swarms). CROMM-MS is designed for controlling the trajectories of heterogeneous multi-swarms of aerial, ground and marine unmanned vehicles with important features such as prioritising early detections and success rate. A new Competitive Coevolutionary Genetic Algorithm (CompCGA) is proposed to optimise the vehicles’ parameters and escapers’ evasion ability using a predator-prey approach. Our results show that CROMM-MS is not only viable for surveillance tasks but also that its results are competitive in regard to the state-of-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.