Genetic programming (GP) is not a field noted for the rigor of its benchmarking. Some of its benchmark problems are popular purely through historical contingency, and they can be criticized as too easy or as providing misleading information concerning real-world performance, but they persist largely because of inertia and the lack of good alternatives. Even where the problems themselves are impeccable, comparisons between studies are made more difficult by the lack of standardization. We argue that the definition of standard benchmarks is an essential step in the maturation of the field. We make several contributions towards this goal. We motivate the development of a benchmark suite and define its goals; we survey existing practice; we enumerate many candidate benchmarks; we report progress on reference implementations; and we set out a concrete plan for gathering feedback from the GP community that would, if adopted, lead to a standard set of benchmarks.
Abstract-We wish to minimize the resources used for network coding while achieving the desired throughput in a multicast scenario. We employ evolutionary approaches, based on a genetic algorithm, that avoid the computational complexity that makes the problem NP-hard. Our experiments show great improvements over the sub-optimal solutions of prior methods. Our new algorithms improve over our previously proposed algorithm in three ways. First, whereas the previous algorithm can be applied only to acyclic networks, our new method works also with networks with cycles. Second, we enrich the set of components used in the genetic algorithm, which improves the performance. Third, we develop a novel distributed framework. Combining distributed random network coding with our distributed optimization yields a network coding protocol where the resources used for coding are optimized in the setup phase by running our evolutionary algorithm at each node of the network. We demonstrate the effectiveness of our approach by carrying out simulations on a number of different sets of network topologies.
We present the results of a community survey regarding genetic programming benchmark practices. Analysis shows broad consensus that improvement is needed in problem selection and experimental rigor. While views expressed in the survey dissuade us from proposing a large-scale benchmark suite, we find community support for creating a ''blacklist'' of problems which are in common use but have important flaws, and whose use should therefore be discouraged. We propose a set of possible replacement problems.
Abstract. We demonstrate how a genetic algorithm solves the problem of minimizing the resources used for network coding, subject to a throughput constraint, in a multicast scenario. A genetic algorithm avoids the computational complexity that makes the problem NP-hard and, for our experiments, greatly improves on sub-optimal solutions of established methods. We compare two different genotype encodings, which tradeoff search space size with fitness landscape, as well as the associated genetic operators. Our finding favors a smaller encoding despite its fewer intermediate solutions and demonstrates the impact of the modularity enforced by genetic operators on the performance of the algorithm.
Malware is constantly adapting in order to avoid detection. Model based malware detectors, such as SVM and neural networks, are vulnerable to so-called adversarial examples which are modest changes to detectable malware that allows the resulting malware to evade detection. Continuous-valued methods that are robust to adversarial examples of images have been developed using saddle-point optimization formulations. We are inspired by them to develop similar methods for the discrete, e.g. binary, domain which characterizes the features of malware. A specific extra challenge of malware is that the adversarial examples must be generated in a way that preserves their malicious functionality. We introduce methods capable of generating functionally preserved adversarial malware examples in the binary domain. Using the saddle-point formulation, we incorporate the adversarial examples into the training of models that are robust to them. We evaluate the effectiveness of the methods and others in the literature on a set of Portable Execution (PE) files. Comparison prompts our introduction of an online measure computed during training to assess general expectation of robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.