Detection of explosives has the flavor of those mathematical problems that are not invertible. It is easier to hide explosives than to find them. Many approaches have been proposed and executed for the remote detection of explosives, contraband materials, weapons of mass destruction, currency, etc. Most detection technologies suffer from a common problem: the features they look for, such as discontinuties in electrical conductivity, are not unique properties of the target but are contained, to some degree, in the more benign surroundings. Such a degeneracy leads to "clutter" in the response. For example, resolving the false alarms generated by this clutter can determine the rate of advance of a conventional electromagnetic metal detector employed as a landmine detector. One approach that provides a "unique" signature is nuclear quadrupole resonance (NQR) (the technique is also called QR, to avoid confusion with strictly nuclear techniques). This paper outlines the important physical principles behind the use of NQR for remote detection, indicates areas of applicability, and presents recent results of field trials of a prototype landmine detection system.
We describe here a new solid-state nuclear-magnetic-resonance (NMR) experiment for correlating anisotropic and isotropic chemical shifts of inequivalent nuclei in powdered samples. Spectra are obtained by processing signals arising from a spinning sample, acquired in independent experiments as a function of the angle between the axis of macroscopic rotation and the external magnetic field. This is in contrast to previously proposed techniques, which were based on sudden mechanical ftippings or multiple-pulse sequences. We show that the time evolution of variable-angle-spinning signals is determined by a distribution relating the isotropic frequencies of the spins with their corresponding chemical shift anisotropies. Fourier transformation of these data therefore affords a twodimensional NMR spectrum, in which line shapes of isotropic and anisotropic interactions are correlated. Theoretical and experimental considerations involved in the extraction of this spectral information are discussed, and the technique is illustrated by an analysis of 13C NMR anisotropy in glycine, cysteine, and p-anisic acid.
We present the use of an alternating current (AC) signal as a means to monitor the conductance of an α-hemolysin (αHL) pore as a DNA hairpin with a polydeoxyadenosine tail is driven into and released from the pore. Specifically, a 12 base pair DNA hairpin attached to a 50-nucleotide poly-A tail (HP-A 50 ) is threaded into an αHL channel using a DC driving voltage. Once the HP-A 50 molecule is trapped within the αHL channel, the DC driving voltage is turned off and the conductance of the channel is monitored using an AC voltage. The escape time, defined as the time it takes the HP-A 50 molecule to transport out of the αHL channel, is then measured. This escape time has been monitored as a function of AC amplitude (20 to 250 mV ac ), AC frequency (60-200 kHz), DC drive voltage (0 to 100 mV dc ), and temperature (−10 to 20 °C), in order to determine their effect on the predominantly diffusive motion of the DNA through the nanopore. The applied AC voltage used to monitor the conductance of the nanopore has been found to play a significant role in the DNA/nanopore interaction. The experimental results are described by a onedimensional asymmetric periodic potential model that includes the influence of the AC voltage. An activation enthalpy barrier of 1.74 × 10 −19 J and a periodic potential asymmetry parameter of 0.575 are obtained for the diffusion at zero electrical bias of a single nucleotide through αHL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.