Photodynamic therapy is a promising treatment method, but its applications are limited by the shallow penetration of visible light. Here, we report a novel X-ray inducible photodynamic therapy (X-PDT) approach that allows PDT to be regulated by X-rays. Upon X-ray irradiation, the integrated nanosystem, comprised of a core of a nanoscintillator and a mesoporous silica coating loaded with photosensitizers, converts X-ray photons to visible photons to activate the photosensitizers and cause efficient tumor shrinkage.
Conventional photodynamic therapy (PDT)'s clinical application is limited by depth of penetration by light. To address the issue, we have recently developed X-ray induced photodynamic therapy (X-PDT) which utilizes X-ray as an energy source to activate a PDT process. In addition to breaking the shallow tissue penetration dogma, our studies found more efficient tumor cell killing with X-PDT than with radiotherapy (RT) alone. The mechanisms behind the cytotoxicity, however, have not been elucidated. In the present study, we investigate the mechanisms of action of X-PDT on cancer cells. Our results demonstrate that X-PDT is more than just a PDT derivative but is essentially a PDT and RT combination. The two modalities target different cellular components (cell membrane and DNA, respectively), leading to enhanced therapy effects. As a result, X-PDT not only reduces short-term viability of cancer cells but also their clonogenecity in the long-run. From this perspective, X-PDT can also be viewed as a unique radiosensitizing method, and as such it affords clear advantages over RT in tumor therapy, especially for radioresistant cells. This is demonstrated not only in vitro but also in vivo with H1299 tumors that were either subcutaneously inoculated or implanted into the lung of mice. These findings and advances are of great importance to the developments of X-PDT as a novel treatment modality against cancer.
Nanoprobes for MRI and optical imaging are demonstrated. Gd@C‐dots possess strong fluorescence and can effectively enhance signals on T1‐weighted MR images. The nanoprobes have low toxicity, and, despite a relatively large size, can be efficiently excreted by renal clearance from the host after systemic injection.
Photosensitizers (PS) are an essential component of photodynamic therapy (PDT). Conventional PSs are often porphyrin derivatives, which are associated with high hydrophobicity, low quantum yield in aqueous solutions, and suboptimal tumor-to-normal-tissue (T/N) selectivity. There have been extensive efforts to load PSs into nanoparticle carriers to improve pharmacokinetics. The approach, however, is often limited by PS self-quenching, pre-mature release, and nanoparticle accumulation in the reticuloendothelial system organs. Herein, a novel, nanoparticle-based PS made of gadolinium-encapsulated graphene carbon nanoparticles (Gd@GCNs), which feature a high O quantum yield, is reported. Meanwhile, Gd@GCNs afford strong fluorescence and high T relaxivity (16.0 × 10 m s , 7 T), making them an intrinsically dual-modal imaging probe. Having a size of approximately 5 nm, Gd@GCNs can accumulate in tumors through the enhanced permeability and retention effect. The unbound Gd@GCNs cause little toxicity because Gd is safely encapsulated within an inert carbon shell and because the particles are efficiently excreted from the host through renal clearance. Studies with rodent tumor models demonstrate the potential of the Gd@GCNs to mediate image-guided PDT for cancer treatment. Overall, the present study shows that Gd@GCNs possess unique physical, pharmaceutical, and toxicological properties and are an all-in-one nanotheranostic tool with substantial clinical translation potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.