Aging biology is a promising and burgeoning research area that can yield dual-purpose pathways and protein targets that may impact multiple diseases, while retarding or possibly even reversing age-associated processes. One widely used approach to classify a multiplicity of mechanisms driving the aging process is the hallmarks of aging. In addition to the classic nine hallmarks of aging, processes such as extracellular matrix stiffness, chronic inflammation and activation of retrotransposons are also often considered, given their strong association with aging. In this study, we used a variety of target identification and prioritization techniques offered by the AI-powered PandaOmics platform, to propose a list of promising novel aging-associated targets that may be used for drug discovery. We also propose a list of more classical targets that may be used for drug repurposing within each hallmark of aging. Most of the top targets generated by this comprehensive analysis play a role in inflammation and extracellular matrix stiffness, highlighting the relevance of these processes as therapeutic targets in aging and age-related diseases. Overall, our study reveals both high confidence and novel targets associated with multiple hallmarks of aging and demonstrates application of the PandaOmics platform to target discovery across multiple disease areas.
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with ill-defined pathogenesis, calling for urgent developments of new therapeutic regimens. Herein, we applied PandaOmics, an AI-driven target discovery platform, to analyze the expression profiles of central nervous system (CNS) samples (237 cases; 91 controls) from public datasets, and direct iPSC-derived motor neurons (diMNs) (135 cases; 31 controls) from Answer ALS. Seventeen high-confidence and eleven novel therapeutic targets were identified and will be released onto ALS.AI (http://als.ai/). Among the proposed targets screened in the c9ALS Drosophila model, we verified 8 unreported genes (KCNB2, KCNS3, ADRA2B, NR3C1, P2RY14, PPP3CB, PTPRC, and RARA) whose suppression strongly rescues eye neurodegeneration. Dysregulated pathways identified from CNS and diMN data characterize different stages of disease development. Altogether, our study provides new insights into ALS pathophysiology and demonstrates how AI speeds up the target discovery process, and opens up new opportunities for therapeutic interventions.
Aging is a complex and multifactorial process that increases the risk of various age-related diseases and there are many aging clocks that can accurately predict chronological age, mortality, and health status. These clocks are disconnected and are rarely fit for therapeutic target discovery. In this study, we propose a novel approach to multimodal aging clock we call Precious1GPT utilizing methylation and transcriptomic data for interpretable age prediction and target discovery developed using a transformer-based model and transfer learning for casecontrol classification. While the accuracy of the multimodal transformer is lower within each individual data type compared to the state of art specialized aging clocks based on methylation or transcriptomic data separately it may have higher practical utility for target discovery. This method provides the ability to discover novel therapeutic targets that hypothetically may be able to reverse or accelerate biological age providing a pathway for therapeutic drug discovery and validation using the aging clock. In addition, we provide a list of promising targets annotated using the PandaOmics industrial target discovery platform.
Glioblastoma Multiforme (GBM) is the most aggressive and most common primary malignant brain tumor. The age of GBM patients is considered as one of the disease's negative prognostic factors and the mean age of diagnosis is 62 years. A promising approach to preventing both GBM and aging is to identify new potential therapeutic targets that are associated with both conditions as concurrent drivers. In this work, we present a multi-angled approach of identifying targets, which takes into account not only the disease-related genes but also the ones important in aging. For this purpose, we developed three strategies of target identification using the results of correlation analysis augmented with survival data, differences in expression levels and previously published information of aging-related genes. Several studies have recently validated the robustness and applicability of AI-driven computational methods for target identification in both cancer and aging-related diseases. Therefore, we leveraged the AI predictive power of the PandaOmics TargetID engine in order to rank the resulting target hypotheses and prioritize the most promising therapeutic gene targets. We propose cyclic nucleotide gated channel subunit alpha 3 (CNGA3), glutamate dehydrogenase 1 (GLUD1) and sirtuin 1 (SIRT1) as potential novel dual-purpose therapeutic targets to treat aging and GBM.
Ischemic stroke (IS) is the majority of strokes which remain the second leading cause of deaths in the last two decades. Circulating microRNAs (miRNAs) have been suggested as potential diagnostic and therapeutic tools for IS by previous studies analyzing their differential expression. However, inconclusive and controversial conclusions of these results have to be addressed. In this study, comprehensive analysis and real-world validation were performed to assess the associations between circulating miRNAs and IS. 29 studies with 112 miRNAs were extracted after manual selection and filtering, 12 differentially expressed miRNAs were obtained from our results of meta-analysis. These miRNAs were evaluated in 20 IS patients, compared to 20 healthy subjects. 4 miRNAs (hsa-let-7e-5p, hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-185-5p) exhibited the significant expression level in IS patient plasma samples. Pathway and biological process enrichment analysis for the target genes of the 4 validated miRNAs identified cellular senescence and neuroinflammation as key post-IS response pathways. The results of our analyses closely correlated with the pathogenesis and implicated pathways observed in IS subjects suggested by the literature, which may provide aid in the development of circulating diagnostic or therapeutic targets for IS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.