Software cost estimation is an essential aspect of software project management and therefore the success or failure of a software project depends on accuracy in estimating effort, time and cost. Software cost estimation is a scientific activity that requires knowledge of a number of relevant attributes that will determine which estimation method to use in a given situation. Over the years various studies were done to evaluate software effort estimation methods however due to introduction of new software development methods, the reviews have not captured new software development methods. Agile software development method is one of the recent popular methods that were not taken into account in previous cost estimation reviews. The main aim of this paper is to review existing software effort estimation methods exhaustively by exploring estimation methods suitable for new software development methods.
Abstract:In the recent years, data mining has been utilized in education settings for extracting and manipulating data, and for establishing patterns in order to produce useful information for decision making. There is a growing need for higher education institutions to be more informed and knowledgeable about their students, and for them to understand some of the reasons behind students' choice to enroll and pursue careers. One of the ways in which this can be done is for such institutions to obtain information and knowledge about their students by mining, processing and analyzing the data they accumulate about them. In this paper, we propose a general framework for mining student data enrolled in Science, Technology, Engineering and Mathematics (STEM) using performance weighted ensemble classifiers. We train an ensemble of classification models from enrollment data streams to improve the quality of student data by eliminating noisy instances, and hence improving predictive accuracy. We empirically compare our technique with single model based techniques and show that using ensemble models not only gives better predictive accuracies on student enrollment in STEM, but also provides better rules for understanding the factors that influence student enrollment in STEM disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.