Abstract:In the recent years, data mining has been utilized in education settings for extracting and manipulating data, and for establishing patterns in order to produce useful information for decision making. There is a growing need for higher education institutions to be more informed and knowledgeable about their students, and for them to understand some of the reasons behind students' choice to enroll and pursue careers. One of the ways in which this can be done is for such institutions to obtain information and knowledge about their students by mining, processing and analyzing the data they accumulate about them. In this paper, we propose a general framework for mining student data enrolled in Science, Technology, Engineering and Mathematics (STEM) using performance weighted ensemble classifiers. We train an ensemble of classification models from enrollment data streams to improve the quality of student data by eliminating noisy instances, and hence improving predictive accuracy. We empirically compare our technique with single model based techniques and show that using ensemble models not only gives better predictive accuracies on student enrollment in STEM, but also provides better rules for understanding the factors that influence student enrollment in STEM disciplines.
The rising number of malicious threats on computer networks and Internet services owing to a large number of attacks makes the network security be at incessant risk. One of the predominant network attacks that poses distressing threats to networks security are the brute force attacks. A brute force attack uses a trial and error algorithm to decode encrypted data such as passwords or Data Encryption Standard keys, through exhaustive effort (using brute force) rather than using intellectual strategies. Brute force attacks resemble legitimate network traffic, making it difficult to defend an organization that rely mainly on perimeter-based security solutions a major challenge. For stopping the occurrence of such attacks, several curable steps must be taken. This paper proposes an efficient mechanism for SSH-Brute force network attacks detection based on a supervised deep learning algorithm, Convolutional Neural Network. The model performance was compared with experimental results from 5 classical machine learning algorithms including Naive Bayes, Logistic Regression, Decision Tree, k-Nearest Neighbour, and Support Vector Machine. Four standard metrics namely, Accuracy, Precision, Recall, and the F-measure were used. Results show that the CNN-based model is superior to the traditional machine learning methods with 94.3% accuracy, a precision rate of 92.5%, recall rate of 97.8% and F1-score of 91.8% in terms of the ability to detect SSH-Brute force attacks.
Educational data mining is the process of applying data mining tools and techniques to analyze data at educational institutions. In this paper, educational data mining was used to predict enrollment of students in Science, Technology, Engineering and Mathematics (STEM) courses in higher educational institutions. The study examined the extent to which individual, sociodemographic and school-level contextual factors help in pre-identifying successful and unsuccessful students in enrollment in STEM disciplines in Higher Education Institutions in Kenya. The Cross Industry Standard Process for Data Mining framework was applied to a dataset drawn from the first, second and third year undergraduate female students enrolled in STEM disciplines in one University in Kenya to model student enrollment. Feature selection was used to rank the predictor variables by their importance for further analysis. Various predictive algorithms were evaluated in predicting enrollment of students in STEM courses. Empirical results showed the following: (i) the most important factors separating successful from unsuccessful students are: High School final grade, teacher inspiration, career flexibility, pre-university awareness and mathematics grade. (ii) among classification algorithms for prediction, decision tree (CART) was the most successful classifier with an overall percentage of correct classification of 85.2%. This paper showcases the importance of Prediction and Classification based data mining algorithms in the field of education and also presents some promising future lines.
Increasing interest and advancement of internet and communication technologies have made network security rise as a vibrant research domain. Network intrusion detection systems (NIDSs) have developed as indispensable defense mechanisms in cybersecurity that are employed in discovery and prevention of malicious network activities. In the recent years, researchers have proposed deep learning approaches in the development of NIDSs owing to their ability to extract better representations from large corpus of data. In the literature, convolutional neural network architecture is extensively used for spatial feature learning, while the long short term memory networks are employed to learn temporal features. In this paper, a novel hybrid method that learn the discriminative spatial and temporal features from the network flow is proposed for detecting network intrusions. A two dimensional convolution neural network is proposed to intelligently extract the spatial characteristics whereas a bi-directional long short term memory is used to extract temporal features of network traffic data samples consequently, forming a deep hybrid neural network architecture for identification and classification of network intrusion samples. Extensive experimental evaluations were performed on two well-known benchmarks datasets: CIC-IDS 2017 and the NSL-KDD datasets. The proposed network model demonstrated state-of-the-art performance with experimental results showing that the accuracy and precision scores of the intrusion detection model are significantly better than those of other existing models. These results depicts the applicability of the proposed model in the spatial-temporal feature learning in network intrusion detection systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.