Background/Aims: RNA elements such as catalytic RNA, riboswitch, microRNA, and long non coding RNA (lncRNA) play central roles in many cellular processes. Studying diverse RNA functions require large quantities of RNA for precise structure analysis. Current RNA structure and function studies can benefit from improved RNA quantity and quality, simpler separation procedure and enhanced accuracy of structural analysis. Methods: Here we present an optimized protocol for analyzing the structure of any RNA, including in vitro transcription, size-exclusion chromatography (SEC) based denaturing purification and improved secondary structure analysis by chemical probing. Results: We observed that higher Mg2+, nucleoside triphosphate (NTP) concentrations and longer reaction duration can improve the RNA yield from in vitro transcription, specifically for longer and more complicated constructs. Our improved SEC-based denaturing RNA purification effectively halved the experiment duration and labor without introducing any contaminant. Finally, this study increased the accuracy and signal-to-noise ratio (SNR) of selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) chemical probing for analyzing RNA structure. Conclusion: Part or all of our modified method can improve almost any RNA-related study from protein-RNA interaction analysis to crystallography.
The rarity of bone and soft tissue sarcoma, the difficulty in interpretation of imaging and histology, the plethora of treatment modalities, and the complexity and intensity of the treatment contribute to the need for systematic multidisciplinary team management of patients with these diseases. An integrated multidisciplinary clinic and team with a structured sarcoma tumor board facilitate team coordination and communication. This paper reviews the rationale for multidisciplinary management of sarcoma and details the operational structure of the Multidisciplinary Sarcoma Clinic and Sarcoma Tumor Board. The structured Multidisciplinary Sarcoma Tumor Board provides opportunity for improvement in logistics, teaching, quality, and enrollment in clinical trials.
The more common use of targeted chemotherapies and focused high-dose radiation have altered the treatment paradigm of bone metastases. Overall changes in the surgical treatment of bone metastases have been driven by an increased multidisciplinary approach to metastatic cancer and the awareness that one type of surgery does not work for all patients. The individual patient treatment goals dictate the surgical procedures used to achieve these goals. Advancements in adjuvant therapy-like radiation and more targeted chemotherapies have allowed for less invasive surgical approaches and therefore faster recoveries and reduced surgical morbidity for patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.