The transcription repressor Bach2 has been proposed as a regulator of T cell quiescence, but the underlying mechanism is not fully understood. Given the importance of interleukin-2 in T cell activation, we investigated whether Bach2 is a component of the network of factors that regulates interleukin-2 expression. In primary and transformed CD4+ T cells, Bach2 overexpression counteracted T cell receptor/CD28- or PMA/ionomycin-driven induction of interleukin-2 expression, and silencing of Bach2 had the opposite effect. Luciferase and chromatin immunoprecipitation assays revealed that Bach2 binds to multiple Maf-recognition element-like sites on the interleukin-2 proximal promoter in a manner competitive with AP-1, and thereby represses AP-1-driven induction of interleukin-2 transcription. Thus, this study demonstrates that Bach2 is a direct repressor of the interleukin-2 gene in CD4+ T cells during the immediate early phase of AP-driven activation, thereby playing an important role in the maintenance of immune quiescence in the steady state.
Insulated gate bipolar transistor (IGBT) element is an electrically conductive device with Bipolar junction transistor (BJT) output and Metal Oxide Silicon Field Effect Transistor (MOSFET) input. The IGBTs is a power semiconductor device that aims for high breakdown voltage, low on-state voltage, fast switching and reliability. This paper is, the experiment was conducted with a two-step field stop, IGBT instead of a traditional one step field stop. In order to minimize the energy loss caused by the trade-off relationship between breakdown voltage and the on-state voltage drop, the experiment was conducted by forming a two-step field stop. Through concentration control between steps, breakdown voltage, On-state Voltage drop and turn off time could be adjusted in detail, and efficient characteristic values could be obtained accordingly. Experiments have confirmed that the On state voltage drop and turn-off time, in particular, can be adjusted by small failure voltage loss upon change in the first stage field stop.
SiC MOSFETs display reliability issues related to the quality of SiO2/SiC interface and bulk material due to the presence of near interface traps and point and extended material defects [1]. These material related issues give rise to a degradation of device reliability and ruggedness. One of them are basal plane dislocations (BPDs) introduced in the drift-layer during the epitaxial growth process which causes a s.c. bipolar degradation. Growth and movement of BPDs fueled by recombination energy has a very significant impact on conduction loss and on-resistance degradation. For 3.3 kV voltage capability, the probability of the appearance of BPDs is greater because the drift region is about three times larger compared to 1.2 kV devices [2-3]. We present measurement results and analysis of bipolar degradation in 3.3 kV MOSFETs with conventional body diode and embedded schottky barrier diode (SBD). The measurements were performed applying 50 % and 80 % of rated current with duty cycle 80 %, under total time of 100 hrs at constant case temperature of 54 °C. The 3rd-quadrant performance of both types of MOSFETs in pre-stress conditions was characterized at 25 and 150 °C with different gate biases of -10 V, 0 V, and +17 V. To evaluate the bipolar degradation, the diode conduction characteristics were measured at 25 °C after different stressing times by diode conduction the MOSFET output characteristics were measured at 25 and 54 °C before and after stressing the intrinsic body diode and embedded SBD. No VSD shift was observed in diode conduction characteristics. The results indicate that the MOSFETs were fabricated on appropriate material with a sufficiently low number basal plane dislocation (BPD). The on-state resistance with VGS = +17 V was decreased by temperature due to increased JFET resistance rather than bipolar degradation. On the other hand, the on-state resistance with VGS = +11 V was impacted by the increased temperature and VTH instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.