We report on electronic transport measurements in rotational square probe configuration in combination with scanning tunneling potentiometry of epitaxial graphene monolayers which were fabricated by polymer-assisted sublimation growth on SiC substrates. The absence of bilayer graphene on the ultralow step edges of below 0.75 nm scrutinized by atomic force microscopy and scanning tunneling microscopy result in a not yet observed resistance isotropy of graphene on 4H- and 6H-SiC(0001) substrates as low as 2%. We combine microscopic electronic properties with nanoscale transport experiments and thereby disentangle the underlying microscopic scattering mechanism to explain the remaining resistance anisotropy. Eventually, this can be entirely attributed to the resistance and the number of substrate steps which induce local scattering. Thereby, our data represent the ultimate limit for resistance isotropy of epitaxial graphene on SiC for the given miscut of the substrate.
A numerical simulation procedure is used to answer some fundamental questions about magnetooptical phenomena. By investigating hypothetical thin buried layers of magnetic material in a non‐magnetic environment of otherwise identical optical properties a suggestive law is derived for the information depth profile of Kerr effect measurements. Differences in phase between contributions from different depth often limit the range of the Kerr effect to a higher degree than absorption. In oxides the profile has usually an oscillating character, but conditions are derived under which these oscillations can be suppressed. The differing phase of sub‐surface contributions connects these considerations with Kamberský's interpretation of the recently discovered magnetooptical gradient effect. Finally, the theoretical and practical possibilities are explored of enhancing the Kerr effect in ultra‐thin films in which all the light is forced to react in a thin layer rather than in the depth of a thick material. In this connection a far‐reaching generalization of Lissberger's limit for the Kerr amplitude in thin film mirror‐based systems is discovered.
We investigate photocurrents driven by femtosecond laser excitation of a (sub)-nanometer tunnel junction in an ultrahigh vacuum low-temperature scanning tunneling microscope (STM). The optically driven charge transfer is revealed by tip retraction curves showing a current contribution for exceptionally large tip-sample distances, evidencing a strongly reduced effective barrier height for photoexcited electrons at higher energies. Our measurements demonstrate that the magnitude of the photo-induced electron transport can be controlled by the laser power as well as the applied bias voltage. In contrast, the decay constant of the photocurrent is only weakly affected by these parameters. Stable STM operation with photoelectrons is demonstrated by acquiring constant current topographies. An effective non-equilibrium electron distribution as a consequence of multiphoton absorption is deduced by the analysis of the photocurrent using a one-dimensional potential barrier model.
Graphene, the first true two-dimensional material still reveals the most remarkable transport properties among the growing class of two-dimensional materials. Although many studies have investigated fundamental scattering processes, the surprisingly large variation in the experimentally determined resistances associated with a localized defect is still an open issue. Here, we quantitatively investigate the local transport properties of graphene prepared by polymer assisted sublimation growth (PASG) using scanning tunneling potentiometry. PASG graphene is characterized by a spatially homogeneous current density, which allows to analyze variations in the local electrochemical potential with high precision. We utilize this possibility by examining the local sheet resistance finding a significant variation of up to 270% at low temperatures. We identify a correlation of the sheet resistance with the stacking sequence of the 6H-SiC substrate as well as with the distance between the graphene
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.