The current status of the Louisiana State University Center for Advanced Microstructures and Devices electron storage ring, beamlines, and the scientific program are described.
Deep x-ray lithography in combination with electroforming is capable of producing high precision metal parts in small lot series. This study deals with a high aspect ratio structure with overall dimensions on the order of 10 mm × 7 mm × 1.5 mm, with the smallest line width being 150 µm. The lateral deviation from the design is to be kept to a minimum, preferably below 5 µm. To ensure adequate quality control, a semi-automated metrology technique has been established to measure all parts.While the paper will give a brief overview of all involved techniques, it focuses on the method to measure the top and bottom of the parts and the top of geometries following the process. The instrument used is a View Engineering Voyager V6x12 microscope, which is fully programmable. The microscope allows direct measurement of geometries but also is capable of saving all captured data as point clouds.These point clouds play a central role when evaluating part geometry. After measuring the part, the point cloud is compared to the computer aided design (CAD) contour of the part, using a commercially available software package. The challenge of proper edge lighting on a nickel alloy part is evaluated by varying lighting conditions systematically. Results of two conditions are presented along with a set of optimized parameters. With the introduced set of tools, process flow can be monitored by measuring geometries, e.g. linewidths in every step of the process line. An example for such analysis is given. After delivery of a large batch of parts, extensive numbers of datasets were available allowing the evaluation of the variation of part geometries. Discussed in detail is the deviation from part top to part bottom geometries indicating swelling of the PMMA mold in the electroplating bath 3
Resist substrates used in the LIGA process must provide high initial bond strength between the substrate and resist, little degradation of the bond strength during x-ray exposure, acceptable undercut rates during development and a surface enabling good electrodeposition of metals. Additionally, they should produce little fluorescence radiation and give small secondary doses in bright regions of the resist at the substrate interface. To develop a new substrate satisfying all these requirements, we have investigated secondary resist doses due to electrons and fluorescence, resist adhesion before exposure, loss of fine features during extended development and the nucleation and adhesion of electrodeposits for various substrate materials. The result of these studies is a new anodized aluminum substrate and accompanying methods for resist bonding and electrodeposition. We demonstrate the successful use of this substrate through all process steps and establish its capabilities via the fabrication of isolated resist features down to 6 µm, feature aspect ratios up to 280 and electroformed nickel structures at heights of 190 to 1400 µm. The minimum mask absorber thickness required for this new substrate ranges from 7 to 15 µm depending on the resist thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.