BackgroundThe purpose of the study was to investigate a novel BRAF and CDK 4/6 inhibitor combination therapy in a murine model of BRAF-V600-mutant human melanoma monitored by 18F–FDG-PET/CT and diffusion-weighted MRI (DW-MRI).MethodsHuman BRAF-V600-mutant melanoma (A375) xenograft-bearing balb/c nude mice (n = 21) were imaged by 18F–FDG-PET/CT and DW-MRI before (day 0) and after (day 7) a 1-week BRAF and CDK 4/6 inhibitor combination therapy (n = 12; dabrafenib, 20 mg/kg/d; ribociclib, 100 mg/kg/d) or placebo (n = 9). Animals were scanned on a small animal PET after intravenous administration of 20 MBq 18F–FDG. Tumor glucose uptake was calculated as the tumor-to-liver-ratio (TTL). Unenhanced CT data sets were subsequently acquired for anatomic coregistration. Tumor diffusivity was assessed by DW-MRI using the apparent diffusion coefficient (ADC). Anti-tumor therapy effects were assessed by ex vivo immunohistochemistry for validation purposes (microvascular density – CD31; tumor cell proliferation – Ki-67).ResultsTumor glucose uptake was significantly suppressed under therapy (∆TTLTherapy − 1.00 ± 0.53 vs. ∆TTLControl 0.85 ± 1.21; p < 0.001). In addition, tumor diffusivity was significantly elevated following the BRAF and CDK 4/6 inhibitor combination therapy (∆ADCTherapy 0.12 ± 0.14 × 10−3 mm2/s; ∆ADCControl − 0.12 ± 0.06 × 10−3 mm2/s; p < 0.001). Immunohistochemistry revealed a significant suppression of microvascular density (CD31, 147 ± 48 vs. 287 ± 92; p = 0.001) and proliferation (Ki-67, 3718 ± 998 vs. 5389 ± 1332; p = 0.007) in the therapy compared to the control group.ConclusionA novel BRAF and CDK 4/6 inhibitor combination therapy exhibited significant anti-angiogenic and anti-proliferative effects in experimental human melanomas, monitored by 18F–FDG-PET/CT and DW-MRI.
PurposeTo investigate αvβ3-integrin-targeted optoacoustic imaging and MRI for monitoring a BRAF/MEK inhibitor combination therapy in a murine model of human melanoma.Materials and methodsHuman BRAF V600E-positive melanoma xenograft (A375)-bearing Balb/c nude mice (n = 10) were imaged before (day 0) and after (day 7) a BRAF/MEK inhibitor combination therapy (encorafenib, 1.3 mg/kg/d; binimetinib, 0.6 mg/kg/d, n = 5) or placebo (n = 5), respectively. Optoacoustic imaging was performed on a preclinical system unenhanced and 5 h after i. v. injection of an αvβ3-integrin-targeted fluorescent probe. The αvβ3-integrin-specific tumor signal was derived by spectral unmixing. For morphology-based tumor response assessments, T2w MRI data sets were acquired on a clinical 3 Tesla scanner. The imaging results were validated by multiparametric immunohistochemistry (ß3 –integrin expression, CD31 –microvascular density, Ki-67 –proliferation).ResultsThe αvβ3-integrin-specific tumor signal was significantly reduced under therapy, showing a unidirectional decline in all animals (from 7.98±2.22 to 1.67±1.30; p = 0.043). No significant signal change was observed in the control group (from 6.60±6.51 to 3.67±1.93; p = 0.500). Immunohistochemistry revealed a significantly lower integrin expression (ß3: 0.20±0.02 vs. 0.39±0.05; p = 0.008) and microvascular density (CD31: 119±15 vs. 292±49; p = 0.008) in the therapy group. Tumor volumes increased with no significant intergroup difference (therapy: +107±42 mm3; control +112±44mm3, p = 0.841). In vivo blocking studies with αvβ3-integrin antagonist cilengitide confirmed the target specificity of the fluorescent probe.Conclusionsαvβ3-integrin-targeted optoacoustic imaging allowed for the early non-invasive monitoring of a BRAF/MEK inhibitor combination therapy in a murine model of human melanoma, adding molecular information on tumor receptor status to morphology-based tumor response criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.