Ga-DOTATATE PET/CT enables detection of meningioma tissue based on somatostatin receptor 2 expression. Transosseous extension of intracranial meningiomas is known to be an important risk factor for tumor recurrence and patient mortality. We analyzed the diagnostic performance of Ga-DOTATATE PET/CT and contrast-enhanced MRI (CE-MRI) for the detection of osseous infiltration using qualitative and quantitative imaging parameters. In this institutional review board-approved retrospective study, subjects were selected from 327 consecutive Ga-DOTATATE PET/CT examinations for evaluation of confirmed or suspected meningioma. Inclusion criteria were CE-MRI within 30 d and pathology-confirmed meningioma diagnosis with inclusion or exclusion of transosseous extension as the standard of reference. Imaging was analyzed by two readers. Tracer uptake values and meningioma volumes were determined. χ, Mann-Whitney U, Wilcoxon signed rank, and McNemar tests, as well as receiver-operating-characteristic analyses, were performed to compare variables and diagnostic performance. Eighty-two patients fulfilled the inclusion criteria. Patients with transosseous extension of meningioma ( = 67) showed significantly larger lesions (median, 12.8 vs. 3.3 mL; < 0.001) and significantly higher tracer uptake values (median SUV, 14.2 vs. 7.6; = 0.011) than patients with extraosseous meningiomas ( = 15). Ga-DOTATATE PET/CT in comparison to CE-MRI performed at a higher sensitivity (98.5% vs. 53.7%) while maintaining high specificity (86.7% vs. 93.3%) in the detection of osseous involvement ( < 0.001). In receiver-operating-characteristic analysis, PET/CT assessment performed better than CE-MRI (area under the curve, 0.932 vs. 0.773). PET/CT- and CE-MRI-based volume estimation yielded comparable results for extraosseous meningiomas ( = 0.132) and the extraosseous part of transosseous meningiomas ( = 0.636), whereas the volume of the intraosseous part was assessed as significantly larger by PET/CT ( < 0.001). Ga-DOTATATE PET/CT enables improved detection of the transosseous extension of intracranial meningiomas compared with CE-MRI.
• Ga-DOTA-TATE PET augments the sensitivity of contrast-enhanced CT by 50 % •Ga-DOTA-TATE PET augments the accuracy of contrast-enhanced CT by 30 % • Somatostatin receptor-targeted hybrid imaging optimizes primary tumour detection in CUP-NET.
PurposeThe aim of this study was to assess the diagnostic performance of ECG-gated non-contrast-enhanced quiescent interval single-shot (QISS) magnetic resonance angiography at a magnetic field strength of 3 Tesla in patients with advanced peripheral arterial occlusive disease (PAOD).Method and MaterialsA total of 21 consecutive patients with advanced PAOD (Fontaine stage IIb and higher) referred for peripheral magnetic resonance angiography (MRA) were included. Imaging was performed on a 3 T whole body MR. Image quality and stenosis diameter were evaluated in comparison to contrast-enhanced continuous table and TWIST MRA (CE-MRA) as standard of reference. QISS images were acquired with a thickness of 1.5 mm each (high-resolution QISS, HR-QISS). Two blinded readers rated the image quality and the degree of stenosis for both HR-QISS and CE-MRA in 26 predefined arterial vessel segments on 5-point Likert scales.ResultsWith CE-MRA as the reference standard, HR-QISS showed high sensitivity (94.1%), specificity (97.8%), positive (95.1%), and negative predictive value (97.2%) for the detection of significant (≥50%) stenosis. Interreader agreement for stenosis assessment of both HR-QISS and CE-MRA was excellent (κ-values of 0.951 and 0.962, respectively). As compared to CR-MRA, image quality of HR-QISS was significantly lower for the distal aorta, the femoral and iliac arteries (each with p<0.01), while no significant difference was found in the popliteal (p = 0.09) and lower leg arteries (p = 0.78).ConclusionNon-enhanced ECG-gated HR-QISS performs very well in subjects with severe PAOD and is a good alternative for patients with a high risk of nephrogenic systemic fibrosis.
• MDCT is an accurate alternative to MRI in disc herniation diagnosis. • By IR enhanced image quality improves MDCT diagnostic confidence similar to MRI. • Advances in CT technology contribute to improved diagnostic performance in lumbar spine imaging.
Background and Purpose— Large vessel occlusion stroke leads to highly variable hyperacute infarction growth. Our aim was to identify clinical and imaging parameters associated with hyperacute infarction growth in patients with an large vessel occlusion stroke of the anterior circulation. Methods— Seven hundred twenty-two consecutive patients with acute stroke were prospectively included in our monocentric stroke registry between 2009 and 2017. We selected all patients with a large vessel occlusion stroke of the anterior circulation, documented times from symptom onset, and CT perfusion on admission for our analysis (N=178). Ischemic core volume was determined with CT perfusion using automated thresholds. Hyperacute infarction growth was defined as ischemic core volume divided by times from symptom onset, assuming linear progression during times from symptom onset to imaging on admission. For collateral assessment, the regional leptomeningeal collateral score (rLMC) was used. Clinical data included the National Institutes of Health Stroke Scale score on admission and cardiovascular risk factors. Regression analysis was performed to adjust for confounders. Results— Median ischemic core volume was 34.4 mL, and median hyperacute infarction growth was 0.27 mL/min. In regression analysis including age, sex, National Institutes of Health Stroke Scale, clot burden score, diabetes mellitus, smoking, hypercholesteremia, hypertension, Alberta Stroke Program Early CT Score, and rLMC scores, only the rLMC score had a significant, independent association with hyperacute infarction growth (adjusted β=−0.35; P <0.001). Trichotomizing patients by rLMC scores yielded 65 patients with good (rLMC >15), 67 with intermediate (rLMC 11–15) and 46 with poor collaterals (rLMC <11) with an infarction growth of 0.17 mL/min, 0.26 mL/min, and 0.41 mL/min, respectively. Conclusions— Hyperacute infarction growth strongly depends on collaterals. In primary stroke centers, hyperacute infarction growth may be extrapolated to estimate the stroke progression during transfer times to thrombectomy centers and to support decisions on which patients to transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.