Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that often occurs concurrently with frontotemporal dementia (FTD), another disorder involving progressive neuronal loss. ALS and FTD form a neurodegenerative continuum and share pathological and genetic features. Mutations in a multitude of genes have been linked to ALS/FTD, including FUS. The FUS protein aggregates and forms inclusions within affected neurons. However, the precise mechanisms connecting protein aggregation to neurotoxicity remain under intense investigation. Recent evidence points to the contribution of epigenetics to ALS/FTD. A main epigenetic mechanism involves the post-translational modification (PTM) of histone proteins. We have previously characterized the histone PTM landscape in a FUS ALS/FTD yeast model, finding a decreased level of acetylation on lysine residues 14 and 56 of histone H3. Here, we describe the first report of amelioration of disease phenotypes by controlling histone acetylation on specific modification sites. We show that inhibiting histone deacetylases, via treatment with trichostatin A, suppresses the toxicity associated with FUS overexpression in yeast by preserving the levels of H3K56ac and H3K14ac without affecting the expression or aggregation of FUS. Our data raise the novel hypothesis that the toxic effect of protein aggregation in neurodegeneration is related to its association with altered histone marks. Altogether, we demonstrate the ability to counter the repercussions of protein aggregation on cell survival by preventing specific histone modification changes. Our findings launch a novel mechanistic framework that will enable alternative therapeutic approaches for ALS/FTD and other neurodegenerative diseases.
Understanding racial disparities in cancer outcomes continues to be a challenge, with likely many factors at play, including socioeconomic factors and genetic polymorphisms impacting basic cellular and molecular functions. Additionally, it is possible that specific combinations of environment and genetics have specific impacts. T‐cell receptor (TCR) gene segment usage, HLA allele combinations have been associated with autoimmune and infectious disease courses, and more recently, TCR gene segment usage, HLA allele combinations have been associated with distinct survival outcomes in cancer as well. We examined several such, previously reported cancer‐related TCR gene segment usage, HLA allele combinations for evidence of racial disparities, with regard to the prevalence of the combination in different racial groups. Results indicated that TCR gene segment usage, potentially reflecting environmental factors related to previous pathogen exposure, in combination with certain HLA alleles or independently, may represent a novel explanation for racial disparities in cancer outcomes. Overall, at this point, a genetic connection to racial disparities in cancer outcomes is detectable but remains modest, suggesting that other factors, such as socioeconomic factors, remain as important considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.