Amyotrophic Lateral Sclerosis (ALS) is the third most common adult onset neurodegenerative disorder worldwide. It is generally characterized by progressive paralysis starting at the limbs ultimately leading to death caused by respiratory failure. There is no cure and current treatments fail to slow the progression of the disease. As such, new treatment options are desperately needed. Epigenetic targets are an attractive possibility because they are reversible. Epigenetics refers to heritable changes in gene expression unrelated to changes in DNA sequence. Three main epigenetic mechanisms include the methylation of DNA, micro-RNAs and the post-translational modification of histone proteins. Histone modifications occur in many amino acid residues and include phosphorylation, acetylation, methylation as well as other chemical moieties. Recent evidence points to a possible role for epigenetic mechanisms in the etiology of ALS. Here we review recent advances linking ALS and epigenetics, with a strong focus on histone modifications. Both local and global changes in histone modification profiles are associated with ALS drawing attention to potential targets for future diagnostic and treatment approaches.
Dedicated to Prof. Adoración Gómez-Quiroga, cancer survivor and outstanding medicinal inorganic chemist.Triple negative breast cancer (TNBC) is one of the breast cancers with poorer prognosis and survival rates. TNBC has a disproportionally high incidence and mortality in women of African descent. We report on the evaluation of Ru-IM (1), a watersoluble organometallic ruthenium compound, in TNBC cell lines derived from patients of European (MDA-MB-231) and African (HCC-1806) ancestry (including IC 50 values, cellular and organelle uptake, cell death pathways, cell cycle, effects on migration, invasion, and angiogenesis, a preliminary proteomic analysis, and an NCI 60 cell-line panel screen). 1 was previously found highly efficacious in MDA-MB-231 cells and xenografts, with little systemic toxicity and preferential accumulation in the tumor. We observe a similar profile for this compound in the two cell lines studied, which includes high cytotoxicity, apoptotic behavior and potential antimetastatic and antiangiogenic properties. Cytokine M-CSF, involved in the PI3/AKT pathway, shows protein expression inhibition with exposure to 1. We also demonstrate a p53 independent mechanism of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.