Nano-pulse stimulation (NPS) as a developing technology has been studied for minimally invasive, nonthermal local cancer elimination for more than a decade. Here we show that a single NPS treatment results in complete regression of the poorly immunogenic, metastatic 4T1-Luc mouse mammary carcinoma. Impressively, spontaneous distant organ metastases were largely prevented, even in those animals with incomplete tumor regression. All tumor-free mice were protected from secondary tumor cell challenge, demonstrating a vaccine-like effect. NPS treatment induced antitumor immunity, long-term memory T cells, destruction of tumor microenvironment and reversal of the massive increase of immune suppressor cells in the tumor microenvironment and blood. NPS-treated 4T1 cells exhibited release of damage-associated molecular patterns (DAMPs), including calreticulin, HMGB1 and ATP, and activated dendritic cells. Those findings suggest that NPS is a potent immunogenic cell death inducer that elicits antitumor immunity to prevent distant metastases in addition to local tumor eradication.
Amyotrophic Lateral Sclerosis (ALS) is the third most common adult onset neurodegenerative disorder worldwide. It is generally characterized by progressive paralysis starting at the limbs ultimately leading to death caused by respiratory failure. There is no cure and current treatments fail to slow the progression of the disease. As such, new treatment options are desperately needed. Epigenetic targets are an attractive possibility because they are reversible. Epigenetics refers to heritable changes in gene expression unrelated to changes in DNA sequence. Three main epigenetic mechanisms include the methylation of DNA, micro-RNAs and the post-translational modification of histone proteins. Histone modifications occur in many amino acid residues and include phosphorylation, acetylation, methylation as well as other chemical moieties. Recent evidence points to a possible role for epigenetic mechanisms in the etiology of ALS. Here we review recent advances linking ALS and epigenetics, with a strong focus on histone modifications. Both local and global changes in histone modification profiles are associated with ALS drawing attention to potential targets for future diagnostic and treatment approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.