The past few decades have seen substantial effort for the design and manufacturing of hydrophobic structured surfaces for enhanced steam condensation in water-based applications. Such surfaces promote dropwise condensation and easy droplet removal. However, less priority has been given to applications utilizing low-surface-tension fluids as the condensate. Lubricant-infused surfaces (LISs) or slippery liquid-infused porous surfaces (SLIPSs) have recently been developed, where the atomically smooth, defect-free slippery surface leads to reduced pinning of water droplets and omniphobic characteristics. The remarkable results of LISs and SLIPSs with a range of working fluid droplets give hope of their viability with low-surface-tension condensates. However, the presence of the additional liquid in the form of lubricant brings other issues to consider. Here, in an effort to study the dropwise condensation potential of LISs and SLIPSs, we investigate the miscibility of a range of low-surface-tension fluids with widely used lubricants in LIS and SLIPS design. We consider a wide range of condensate surface tensions (12-73 mN/m) and different categories of lubricants with varied viscosities (5-2700 cSt), namely, fluorinated Krytox oils, hydrocarbon silicone oils, mineral oil, and ionic liquids. In addition, we use both theory and pendant drop experiments to predict the cloaking behavior of the lubricants and immiscible condensate working fluid pairs. Our work not only shows that careful attention must be paid to lubricant-condensate selection to create long-lasting LISs or SLIPSs but also develops lubricant selection design guidelines for stable LISs and SLIPSs for enhanced condensation in applications utilizing low-surface-tension working fluids.
Vapor condensation is a widely used industrial process for transferring heat and separating fluids. Despite progress in developing low surface energy hydrophobic and micro/nanostructured superhydrophobic coatings to enhance water vapor condensation, demonstration of stable dropwise condensation of low-surface-tension fluids has not been achieved. Here, we develop rationally designed nanoengineered lubricant-infused surfaces (LISs) having ultralow contact angle hysteresis (<3°) for stable dropwise condensation of ethanol (γ ≈ 23 mN/m) and hexane (γ ≈ 19 mN/m). Using a combination of optical imaging and rigorous heat transfer measurements in a controlled environmental chamber free from noncondensable gases (<4 Pa), we characterize the condensation behavior of ethanol and hexane on ultrascalable nanostructured CuO surfaces impregnated with fluorinated lubricants having varying viscosities (0.496 < μ < 5.216 Pa•s) and chemical structures (branched versus linear, Krytox and Fomblin). We demonstrate stable dropwise condensation of ethanol and hexane on LISs impregnated with Krytox 1525, attaining about 200% enhancement in condensation heat transfer coefficient for both fluids compared to filmwise condensation on hydrophobic surfaces. In contrast to previous studies, we use 7 h of steady dropwise condensation experiments to demonstrate the importance of rational lubricant selection to minimize lubricant drainage and maximize LIS durability. This work not only demonstrates an avenue to achieving stable dropwise condensation of ethanol and hexane, it develops the fundamental design principles for creating durable LISs for enhanced condensation heat transfer of low-surfacetension fluids.
Since their discovery a decade ago, slippery liquid infused porous surfaces (SLIPSs) or lubricant infused surfaces (LISs) have been demonstrated time and again to have immense potential for a plethora of applications. Of these, one of the most promising is enhancing the energy efficiency of both thermoelectric and organic Rankine cycle power generation via enhanced vapor condensation. However, utilization of SLIPSs in the energy sector remains limited due to the poor understanding of their life span. Here, we use controlled conditions to conduct multimonth steam and ethanol condensation tests on ultrascalable nanostructured copper oxide structured surfaces impregnated with mineral and fluorinated lubricants having differing viscosities (9.7 mPa·s < μ < 5216 mPa·s) and chemical structures. Our study demonstrates that SLIPSs lose their hydrophobicity during steam condensation after 1 month due to condensate cloaking. However, these same SLIPSs maintain nonwetting after 5 months of ethanol condensation due to the absence of cloaking. Surfaces impregnated with higher viscosity oil (5216 mPa·s) increase the life span to more than 8 months of continuous ethanol condensation. Vapor shear tests revealed that SLIPSs do not undergo oil depletion during exposure to 10 m/s gas flows, critical to condenser implementation where single-phase superheated vapor impingement is prevalent. Furthermore, higher viscosity SLIPSs are shown to maintain good stability after exposure to 200 °C air. A subset of the durable SLIPSs did not show change in slipperiness after submerging in stagnant water and ethanol for up to 2 weeks, critical to condenser implementation where single-phase condensate immersion is prevalent. Our work not only demonstrates design methods and longevity statistics for slippery nanoengineered surfaces undergoing long-term dropwise condensation of steam and ethanol but also develops the fundamental design guidelines for creating durable slippery liquid infused surfaces.
Lubricant-infused surfaces (LISs) and slippery liquid-infused porous surfaces (SLIPSs) have shown remarkable success in repelling low-surface-tension fluids. The atomically smooth, defect-free slippery surface leads to reduced droplet pinning and omniphobicity. However, the presence of a lubricant introduces liquid–liquid interactions with the working fluid. The commonly utilized lubricants for LISs and SLIPSs, although immiscible with water, show various degrees of miscibility with organic polar and nonpolar working fluids. Here, we rigorously investigate the extent of miscibility by considering a wide range of liquid–vapor surface tensions (12–73 mN/m) and different categories of lubricants having a range of viscosities (5–2700 cSt). Using high-fidelity analytical chemistry techniques including X-ray photoelectron spectroscopy, nuclear magnetic resonance, thermogravimetric analysis, and two-dimensional gas chromatography, we quantify lubricant miscibility to parts per billion accuracy. Furthermore, we quantify lubricant concentrations in the collected condensate obtained from prolonged condensation experiments with ethanol and hexane to delineate mixing and shear-based lubricant drainage mechanisms and to predict the lifetime of LISs and SLIPSs. Our work not only elucidates the effect of lubricant properties on miscibility with various fluids but also develops guidelines for developing stable and robust LISs and SLIPSs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.