We present a human-centric spatio-temporal model for service robots operating in densely populated environments for long time periods. The method integrates observations of pedestrians performed by a mobile robot at different locations and times into a memory efficient model, that represents the spatial layout of natural pedestrian flows and how they change over time. To represent temporal variations of the observed flows, our method does not model the time in a linear fashion, but by several dimensions wrapped into themselves. This representation of time can capture long-term (i.e. days to weeks) periodic patterns of peoples' routines and habits. Knowledge of these patterns allows making long-term predictions of future human presence and walking directions, which can support mobile robot navigation in human-populated environments. Using datasets gathered by a robot for several weeks, we compare the model to state-of-the-art methods for pedestrian flow modelling.
Visual teach and repeat navigation (VT&R) is popular in robotics thanks to its simplicity and versatility. It enables mobile robots equipped with a camera to traverse learned paths without the need to create globally consistent metric maps. Although teach and repeat frameworks have been reported to be relatively robust to changing environments, they still struggle with day-to-night and seasonal changes. This paper aims to find the horizontal displacement between prerecorded and currently perceived images required to steer a robot towards the previously traversed path. We employ a fully convolutional neural network to obtain dense representations of the images that are robust to changes in the environment and variations in illumination. The proposed model achieves state-of-the-art performance on multiple datasets with seasonal and day/night variations. In addition, our experiments show that it is possible to use the model to generate additional training examples that can be used to further improve the original model’s robustness. We also conducted a real-world experiment on a mobile robot to demonstrate the suitability of our method for VT&R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.