Large amounts of data in the form of irregularly sampled time series have emerged from several different areas, such as astronomy, meteorology, biology, oceanography and cyclostratigraphy [
The virtual geomagnetic pole (VGP) trajectories during some geomagnetic polarity reversals of different ages are marked by anisotropic behaviour. This recurrent phenomenon may be reflected in the paleomagnetic data, even if the transitional field was not completely recorded. As the long-scale geomagnetic variations have a confined oscillatory character, the VGP paths from stratigraphically controlled sequences may be described on the basis of sine and cosine functions, even if time is not the independent variable. Here we considered longitude (or space) as the independent variable which had to be 'unrolled' to overcome the 3608 repetitions as the VGPs moved around the geographic pole.Sixteen VGP series from the Early Cretaceous Serra Geral lava flows of southern Brazil were analysed using a modified version of the periodogram for uneven data series, and a combination of information approach. The combination of all the spectra, as in a stacking procedure, reduces noise and results in a smooth curve highlighting features of interest. We found a set of highest correlation wavelengths of approximately 167, 190, 209, 257, 277 and 3688. Phase analyses using two different methods revealed strikingly good coherence for some of these wavelengths, indicating that they are not only artefacts of the spectral analysis. Similar analysis of magnetostratigraphic data from the Icelandic Magmatic Province indicated that the two datasets may have wavelengths of approximately 165 and 2708 in common. These results suggest quasi-periodic behaviour, possibly with sub-harmonic instabilities owing to the modulating effect of inner Earth's anisotropies influencing the pole trajectory.
We present an analysis of the error involved in the so-called low induction number approximation in the electromagnetic methods. In particular, we focus on the EM34 equipment settings and field configurations, widely used for geophysical prospecting of laterally electrical conductivity anomalies and shallow targets. We show the theoretical error for the conductivity in both vertical and horizontal dipole coil configurations within the low induction number regime and up to the maximum measuring limit of the equipment. A linear relationship may be adjusted until slightly beyond the point where the conductivity limit for low induction number ( = 1) is reached. The equations for the linear fit of the relative error in the low induction number regime are also given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.