Abstract:We report results from Brownian dynamics computer simulations of systems comprised by two terminally charged hyperbranched molecules preferentially branched in the periphery, with an oppositely charged linear chain of varying length. Comparison of the findings from the present study to stoichiometric counterparts and to analogous dendrimer-based complexes, reveal that the presence of the second hyperbranched molecule incurs significant changes in the conformational characteristics of both components of the complex. Instead of step-like changes in the average size and shape of the hyperbranched component that were noted in the previously studied stoichiometric systems, a rather smooth change is observed upon increase of the length of the linear component. In addition, a markedly different behavior is also noticed in the conformational characteristics of the linear chain when compared to that in similar dendrimer-based systems. The above findings are consistent with the higher degree of deformability of the peripherally branched molecules which allow appropriate rearrangements in shape in order to accommodate the favorable Coulombic interactions between the two components of the complex. This behavior offers new insight towards the design of more efficient OPEN ACCESSPolymers 2012, 4 241 hyperbranched-based systems which can take advantage of the multifunctionality and the structural properties of the highly branched polymer components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.