We conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a UK teaching hospital using naso-/oro-pharyngeal PCR testing and immunoassays for IgG antibodies. 1128/10,034(11.2%) staff had evidence of Covid-19 at some time. Using questionnaire data provided on potential risk-factors, staff with a confirmed household contact were at greatest risk (adjusted odds ratio [aOR] 4.82 [95%CI 3.45-6.72]). Higher rates of Covid-19 were seen in staff working in Covid-19-facing areas (22.6% vs. 8.6% elsewhere) (aOR 2.47 [1.99-3.08]). Controlling for Covid-19-facing status, risks were heterogenous across the hospital, with higher rates in acute medicine (1.52 [1.07-2.16]) and sporadic outbreaks in areas with few or no Covid-19 patients. Covid-19 intensive care unit staff were relatively protected (0.44 [0.28-0.69]), likely by a bundle of PPE-related measures. Positive results were more likely in Black (1.66 [1.25-2.21]) and Asian (1.51 [1.28-1.77]) staff, independent of role or working location, and in porters and cleaners (2.06 [1.34-3.15]).
We report that in a cohort of 45,965 adults, who were receiving either the ChAdOx1 or the BNT162b2 SARS-CoV-2 vaccines, in those who had no prior infection with SARS-CoV-2, seroconversion rates and quantitative antibody levels after a single dose were lower in older individuals, especially in those aged >60 years. Two vaccine doses achieved high responses across all ages. Antibody levels increased more slowly and to lower levels with a single dose of ChAdOx1 compared with a single dose of BNT162b2, but waned following a single dose of BNT162b2 in older individuals. In descriptive latent class models, we identified four responder subgroups, including a ‘low responder’ group that more commonly consisted of people aged >75 years, males and individuals with long-term health conditions. Given our findings, we propose that available vaccines should be prioritized for those not previously infected and that second doses should be prioritized for individuals aged >60 years. Further data are needed to better understand the extent to which quantitative antibody responses are associated with vaccine-mediated protection.
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic in 2020. Testing is crucial for mitigating public health and economic effects. Serology is considered key to population-level surveillance and potentially individual-level risk assessment. However, immunoassay performance has not been compared on large, identical sample sets. We aimed to investigate the performance of four high-throughput commercial SARS-CoV-2 antibody immunoassays and a novel 384-well ELISA. Methods We did a head-to-head assessment of SARS-CoV-2 IgG assay (Abbott, Chicago, IL, USA), LIAISON SARS-CoV-2 S1/S2 IgG assay (DiaSorin, Saluggia, Italy), Elecsys Anti-SARS-CoV-2 assay (Roche, Basel, Switzerland), SARS-CoV-2 Total assay (Siemens, Munich, Germany), and a novel 384-well ELISA (the Oxford immunoassay). We derived sensitivity and specificity from 976 pre-pandemic blood samples (collected between Sept 4, 2014, and Oct 4, 2016) and 536 blood samples from patients with laboratory-confirmed SARS-CoV-2 infection, collected at least 20 days post symptom onset (collected between Feb 1, 2020, and May 31, 2020). Receiver operating characteristic (ROC) curves were used to assess assay thresholds. Findings At the manufacturers' thresholds, for the Abbott assay sensitivity was 92·7% (95% CI 90·2–94·8) and specificity was 99·9% (99·4–100%); for the DiaSorin assay sensitivity was 95·0% (92·8–96·7) and specificity was 98·7% (97·7–99·3); for the Oxford immunoassay sensitivity was 99·1% (97·8–99·7) and specificity was 99·0% (98·1–99·5); for the Roche assay sensitivity was 97·2% (95·4–98·4) and specificity was 99·8% (99·3–100); and for the Siemens assay sensitivity was 98·1% (96·6–99·1) and specificity was 99·9% (99·4–100%). All assays achieved a sensitivity of at least 98% with thresholds optimised to achieve a specificity of at least 98% on samples taken 30 days or more post symptom onset. Interpretation Four commercial, widely available assays and a scalable 384-well ELISA can be used for SARS-CoV-2 serological testing to achieve sensitivity and specificity of at least 98%. The Siemens assay and Oxford immunoassay achieved these metrics without further optimisation. This benchmark study in immunoassay assessment should enable refinements of testing strategies and the best use of serological testing resource to benefit individuals and population health. Funding Public Health England and UK National Institute for Health Research.
Sphingosine 1-phosphate (S1P) is a bioactive lysolipid with pleiotropic functions mediated through a family of G proteincoupled receptors, S1P 1,2,3,4,5 . Physiological effects of S1P receptor agonists include regulation of cardiovascular function and immunosuppression via redistribution of lymphocytes from blood to secondary lymphoid organs. The phosphorylated metabolite of the immunosuppressant agent FTY720 (2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol) and other phosphonate analogs with differential receptor selectivity were investigated. No significant species differences in compound potency or rank order of activity on receptors cloned from human, murine, and rat sources were observed. All synthetic analogs were high-affinity agonists on S1P 1 , with IC 50 values for ligand binding between 0.3 and 14 nM. The correlation between S1P 1 receptor activation and the ED 50 for lymphocyte reduction was highly significant (p Ͻ 0.001) and lower for the other receptors. In contrast to S1P 1 -mediated effects on lymphocyte recirculation, three lines of evidence link S1P 3 receptor activity with acute toxicity and cardiovascular regulation: compound potency on S1P 3 correlated with toxicity and bradycardia; the shift in potency of phosphorylated-FTY720 for inducing lymphopenia versus bradycardia and hypertension was consistent with affinity for S1P 1 relative to S1P 3 ; and toxicity, bradycardia, and hypertension were absent in S1P 3 Ϫ/Ϫ mice. Blood pressure effects of agonists in anesthetized rats were complex, whereas hypertension was the predominant effect in conscious rats and mice. Immunolocalization of S1P 3 in rodent heart revealed abundant expression on myocytes and perivascular smooth muscle cells consistent with regulation of bradycardia and hypertension, whereas S1P 1 expression was restricted to the vascular endothelium.
Background SARS-CoV-2 IgG antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. Methods We present 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers (HCWs). Serial measurements of SARS-CoV-2 anti-nucleocapsid and anti-spike IgG were obtained. Interval censored survival analysis was used to investigate the duration of detectable responses. Additionally, Bayesian mixed linear models were used to investigate anti-nucleocapsid waning. Results Anti-spike IgG levels remained stably detected after a positive result, e.g., in 94% (95% credibility interval, CrI, 91-96%) of HCWs at 180 days. Anti-nucleocapsid IgG levels rose to a peak at 24 (95% credibility interval, CrI 19-31) days post first PCR-positive test, before beginning to fall. Considering 452 anti-nucleocapsid seropositive HCWs over a median of 121 days from their maximum positive IgG titre, the mean estimated antibody half-life was 85 (95%CrI, 81-90) days. Higher maximum observed anti-nucleocapsid titres were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity and prior self-reported symptoms were independently associated with higher maximum anti-nucleocapsid levels and increasing age and a positive PCR test undertaken for symptoms with longer anti-nucleocapsid half-lives. Conclusion SARS-CoV-2 anti-nucleocapsid antibodies wane within months, and faster in younger adults and those without symptoms. However, anti-spike IgG remains stably detected. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.