Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic in 2020. Testing is crucial for mitigating public health and economic effects. Serology is considered key to population-level surveillance and potentially individual-level risk assessment. However, immunoassay performance has not been compared on large, identical sample sets. We aimed to investigate the performance of four high-throughput commercial SARS-CoV-2 antibody immunoassays and a novel 384-well ELISA. Methods We did a head-to-head assessment of SARS-CoV-2 IgG assay (Abbott, Chicago, IL, USA), LIAISON SARS-CoV-2 S1/S2 IgG assay (DiaSorin, Saluggia, Italy), Elecsys Anti-SARS-CoV-2 assay (Roche, Basel, Switzerland), SARS-CoV-2 Total assay (Siemens, Munich, Germany), and a novel 384-well ELISA (the Oxford immunoassay). We derived sensitivity and specificity from 976 pre-pandemic blood samples (collected between Sept 4, 2014, and Oct 4, 2016) and 536 blood samples from patients with laboratory-confirmed SARS-CoV-2 infection, collected at least 20 days post symptom onset (collected between Feb 1, 2020, and May 31, 2020). Receiver operating characteristic (ROC) curves were used to assess assay thresholds. Findings At the manufacturers' thresholds, for the Abbott assay sensitivity was 92·7% (95% CI 90·2–94·8) and specificity was 99·9% (99·4–100%); for the DiaSorin assay sensitivity was 95·0% (92·8–96·7) and specificity was 98·7% (97·7–99·3); for the Oxford immunoassay sensitivity was 99·1% (97·8–99·7) and specificity was 99·0% (98·1–99·5); for the Roche assay sensitivity was 97·2% (95·4–98·4) and specificity was 99·8% (99·3–100); and for the Siemens assay sensitivity was 98·1% (96·6–99·1) and specificity was 99·9% (99·4–100%). All assays achieved a sensitivity of at least 98% with thresholds optimised to achieve a specificity of at least 98% on samples taken 30 days or more post symptom onset. Interpretation Four commercial, widely available assays and a scalable 384-well ELISA can be used for SARS-CoV-2 serological testing to achieve sensitivity and specificity of at least 98%. The Siemens assay and Oxford immunoassay achieved these metrics without further optimisation. This benchmark study in immunoassay assessment should enable refinements of testing strategies and the best use of serological testing resource to benefit individuals and population health. Funding Public Health England and UK National Institute for Health Research.
Background: The COVID-19 pandemic caused >1 million infections during January-March 2020. There is an urgent need for reliable antibody detection approaches to support diagnosis, vaccine development, safe release of individuals from quarantine, and population lock-down exit strategies. We set out to evaluate the performance of ELISA and lateral flow immunoassay (LFIA) devices. Methods: We tested plasma for COVID (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) IgM and IgG antibodies by ELISA and using nine different LFIA devices. We used a panel of plasma samples from individuals who have had confirmed COVID infection based on a PCR result (n=40), and pre-pandemic negative control samples banked in the UK prior to December-2019 (n=142). Results: ELISA detected IgM or IgG in 34/40 individuals with a confirmed history of COVID infection (sensitivity 85%, 95%CI 70-94%), vs. 0/50 pre-pandemic controls (specificity 100% [95%CI 93-100%]). IgG levels were detected in 31/31 COVID-positive individuals tested ≥10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but remained above the detection threshold. Point estimates for the sensitivity of LFIA devices ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 93-100% respectively. Within the limits of the study size, the performance of most LFIA devices was similar. Conclusions: Currently available commercial LFIA devices do not perform sufficiently well for individual patient applications. However, ELISA can be calibrated to be specific for detecting and quantifying SARS-CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days following first symptoms.
SummaryRecent genomic analyses show that the earliest peoples reaching Remote Oceania – associated with Austronesian-speaking Lapita culture – were almost completely East Asian, without detectable Papuan ancestry. Yet Papuan-related genetic ancestry is found across present-day Pacific populations, indicating that peoples from Near Oceania have played a significant – but largely unknown – ancestral role. Here, new genome-wide data from 19 South Pacific individuals provide direct evidence of a so-far undescribed Papuan expansion into Remote Oceania starting ~2,500 years before present, far earlier than previously estimated and supporting a model from historical linguistics. New genome-wide data from 27 contemporary ni-Vanuatu demonstrate a subsequent and almost complete replacement of Lapita-Austronesian by Near Oceanian ancestry. Despite this massive demographic change, incoming Papuan languages did not replace Austronesian languages. Population replacement with language continuity is extremely rare – if not unprecedented – in human history. Our analyses show that rather than one large-scale event, the process was incremental and complex, with repeated migrations and sex-biased admixture with peoples from the Bismarck Archipelago.
The indigenous populations of the South Pacific experience a high burden of rheumatic heart disease (RHD). Here we report a genome-wide association study (GWAS) of RHD susceptibility in 2,852 individuals recruited in eight Oceanian countries. Stratifying by ancestry, we analysed genotyped and imputed variants in Melanesians (607 cases and 1,229 controls) before follow-up of suggestive loci in three further ancestral groups: Polynesians, South Asians and Mixed or other populations (totalling 399 cases and 617 controls). We identify a novel susceptibility signal in the immunoglobulin heavy chain (IGH) locus centring on a haplotype of nonsynonymous variants in the IGHV4-61 gene segment corresponding to the IGHV4-61*02 allele. We show each copy of IGHV4-61*02 is associated with a 1.4-fold increase in the risk of RHD (odds ratio 1.43, 95% confidence intervals 1.27–1.61, P=4.1 × 10−9). These findings provide new insight into the role of germline variation in the IGH locus in disease susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.