It follows by Bixby's Lemma that if $e$ is an element of a $3$-connected matroid $M$, then either $\textrm{co}(M\backslash e)$, the cosimplification of $M\backslash e$, or $\textrm{si}(M/e)$, the simplification of $M/e$, is $3$-connected. A natural question to ask is whether $M$ has an element $e$ such that both $\textrm{co}(M\backslash e)$ and $\textrm{si}(M/e)$ are $3$-connected. Calling such an element "elastic", in this paper we show that if $|E(M)|\ge 4$, then $M$ has at least four elastic elements provided $M$ has no $4$-element fans.
An element $e$ of a $3$-connected matroid $M$ is elastic if ${\rm si}(M/e)$, the simplification of $M/e$, and ${\rm co}(M\backslash e)$, the cosimplification of $M\backslash e$, are both $3$-connected. It was recently shown that if $|E(M)|\geq 4$, then $M$ has at least four elastic elements provided $M$ has no $4$-element fans and no member of a specific family of $3$-separators. In this paper, we extend this wheels-and-whirls type result to a splitter theorem, where the removal of elements is with respect to elasticity and keeping a specified $3$-connected minor. We also prove that if $M$ has exactly four elastic elements, then it has path-width three. Lastly, we resolve a question of Whittle and Williams, and show that past analogous results, where the removal of elements is relative to a fixed basis, are consequences of this work.
One characterization of binary matroids is that the symmetric difference of every pair of intersecting circuits is a disjoint union of circuits. This paper considers circuit-difference matroids, that is, those matroids in which the symmetric difference of every pair of intersecting circuits is a single circuit. Our main result shows that a connected regular matroid is circuit-difference if and only if it contains no pair of skew circuits. Using a result of Pfeil, this enables us to explicitly determine all regular circuit-difference matroids. The class of circuit-difference matroids is not closed under minors, but it is closed under series minors. We characterize the infinitely many excluded series minors for the class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.