It is accepted that only three elements are ferromagnetic at room temperature, the transition metals iron, cobalt and nickel. The Stoner criterion explains why, for example, iron is ferromagnetic but manganese is not, even though both elements have an unfilled 3d shell and are adjacent in the periodic table: the product of the density of states with the exchange integral must be greater than unity for spontaneous ordering to emerge.1,2 Here, we demonstrate that it is possible to alter the electronic states of nonferromagnetic materials, such as diamagnetic copper and paramagnetic manganese, in 2 order to drive them ferromagnetic at room temperature. This remarkable effect is achieved via interfaces between metallic thin films and C 60 molecular layers. The emergent ferromagnetic state can exist over several layers of the metal before being quenched at large sample thicknesses by the material's bulk properties. While the induced magnetisation is easily measurable by magnetometry, low energy muon spin spectroscopy 3 provides insight into its magnetic distribution by studying the depolarisation process of low energy muons implanted in the sample. This technique indicates localized spin-ordered states at and close to the metallo-molecular interface.Density functional theory simulations suggest a mechanism based on magnetic hardening of the metal atoms due to electron transfer. 4,5 This opens a path for the exploitation of molecular coupling to design magnetic metamaterials using abundant, non-toxic elements such as organic semiconductors. Charge transfer at molecular interfaces can then be used to control spin polarisation or magnetisation, with far reaching consequences in the design of devices for electronic, power or computing applications. 6,7 Multifunctional materials with the spin degree of freedom such as multiferroics, magnetic semiconductors and molecular magnets have all aroused huge interest as potentially transformative components in quantum technologies. [8][9][10][11][12] Strategies used to bring magnetic ordering to these materials typically rely on the inclusion of magnetic transition metals, heavy elements with a large atomic moment or rare earths. In thin film structures, proximity effects and coupling at interfaces play an essential role. 13,14 This is especially the case for molecular spintronics, 15,16 where organic thin films grown on copper have demonstrated spin filtering. 17The organic magnetic coupling can propagate for long distances in systems such as nanoscale vortex-like configurations or nanoskyrmion lattices. 183We choose C 60 as a model molecule due to its structural simplicity and robustness as well as its high electron affinity. C 60 /transition metal complexes exhibit strong interfacial coupling between metal 3d z electrons and molecular π-bonded p electrons. The potential created by the mismatch of molecular and metal work functions leads to a partial filling of the interface states. [19][20][21] Other molecules with close electron affinity and the potential for 3d z /p coupling ...
The emergence of magnesium and calcium batteries as potential beyond Li ion energy storage technologies has generated significant interest into the fundamental aspects of alkaline earth metal cation coordination in multivalent electrolytes and the impact of coordination on application-critical electrolyte properties such as solubility, transport, and electrochemical stability. Understanding these details in calcium electrolytes is of immediate importance due to recent, unprecedented demonstrations of reversible calcium metal electrodeposition in a limited number of ethereal solvent-based systems. In this work, we provide insight connecting Ca 2+ coordination tendencies to important calcium battery electrolyte properties. Our results demonstrate a clear solvent:Ca 2+ coordination strength trend across a series of cyclic ether and linear glyme solvents that controls the extent of ion association in solutions of "weakly" coordinating salts. We apply understanding gained from these results to rationalize relative anion:Ca 2+ coordination tendencies and attendant Ca 2+ coordination structures using two oxidatively stable anions of particular interest for current battery electrolytes. Armed with this understanding of solvent and anion interactions with Ca 2+ , we demonstrate and interpret differences in electrochemical calcium deposition behavior across several electrolyte exemplars with varying solvent and anion coordination strengths. Our findings demonstrate that solvents exhibiting especially strong coordination to Ca 2+ , such as triglyme, can inhibit reversible calcium deposition despite effective elimination of anion:Ca 2+ coordination while solvents exhibiting more modest coordination strength, such as 1,2-dimethoxyethane, may enable deposition provided anion:Ca 2+ coordination is substantially limited. These results reveal that the strength of coordination of both anion and solvent should be considered in the design of electrolytes for calcium batteries.
Enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against sulfide solid electrolytes. While protective oxide coating layers such as LiNbO3 (LNO) have been proposed, its precise working mechanisms are still not fully understood. Existing literature attributes reductions in interfacial impedance growth to the coating’s ability to prevent interfacial reactions. However, its true nature is more complex, with cathode interfacial reactions and electrolyte electrochemical decomposition occurring simultaneously, making it difficult to decouple each effect. Herein, we utilized various advanced characterization tools and first-principles calculations to probe the interfacial phenomenon between solid electrolyte Li6PS5Cl (LPSCl) and high-voltage cathode LiNi0.85Co0.1Al0.05O2 (NCA). We segregated the effects of spontaneous reaction between LPSCl and NCA at the interface and quantified the intrinsic electrochemical decomposition of LPSCl during cell cycling. Both experimental and computational results demonstrated improved thermodynamic stability between NCA and LPSCl after incorporation of the LNO coating. Additionally, we revealed the in situ passivation effect of LPSCl electrochemical decomposition. When combined, both these phenomena occurring at the first charge cycle result in a stabilized interface, enabling long cyclability of all-solid-state batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.