Exploiting the unique properties of three‐dimensional (3D) auxetic scaffolds in tissue engineering and regenerative medicine applications provides new impetus to these fields. Herein, the results on the fabrication and characterization of 3D auxetic scaffolds for tissue engineering applications are presented. The scaffolds are based on the well‐known re‐entrant hexagonal geometry (bowtie) and they are fabricated by multiphoton lithography using the organic−inorganic photopolymer SZ2080. In situ scanning electron microscopy–microindentations and nanoindention experiments are employed to characterize the photocurable resin SZ2080 and the scaffolds fabricated with it. Despite SZ2080 being a stiff material with a positive Poisson’s ratio, the scaffolds exhibit a negative Poisson’s ratio and high elasticity due to their architecture. Next, mouse fibroblasts are used to seed the scaffolds, showing that they can readily penetrate them and proliferate in them, adapting the scaffold shape to suit the cells’ requirements. Moreover, the scaffold architecture provides the cells with a predilection to specific directions, an imperative parameter for regenerative medicine in many cell‐based applications. This research paves the way for the utility of 3D auxetic metamaterials as the next‐generation adaptable scaffolds for tissue engineering.
We use a previously unexplored Bayesian optimization framework, "evolutionary Monte Carlo sampling," to systematically design the arrangement of defects in an architected microlattice to maximize its strain energy density before undergoing catastrophic failure. Our algorithm searches a design space with billions of 4 × 4 × 5 3D lattices, yet it finds the global optimum with only 250 cost function evaluations. Our optimum has a normalized strain energy density 12,464 times greater than its commonly studied defect-free counterpart. Traditional optimization is inefficient for this microlattice because (i) the design space has discrete, qualitative parameter states as input variables, (ii) the cost function is computationally expensive, and (iii) the design space is large. Our proposed framework is useful for architected materials and for many optimization problems in science and elucidates how defects can enhance the mechanical performance of architected materials.
Multiphoton lithography allows the high resolution, free-form 3D printing of structures such as micro-optical elements and 3D scaffolds for Tissue Engineering. A major obstacle in its application in these fields is material and structure autofluorescence. Existing photoresists promise near zero fluorescence at the expense of poor mechanical properties, and low printing efficiency. Sudan Black B is a molecular quencher used as a dye for biological studies and as means of decreasing the autofluorescence of polymers. In our study, we report the use of Sudan Black B both as a photoinitiator and as a post-fabrication treatment step, using the zirconium silicate SZ2080 for the development of a non-fluorescent composite. We use this material for the 3D printing of micro-optical elements, and meso-scale scaffolds for mesenchymal stem cell cultures. Our results show that the Sudan Black B photosensitive hybrid can be used for the fabrication of high resolution, highly transparent, autofluorescence-free microstructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.