Small trees ofAbies lasiocarpa (Hook.) Nutt. andPicea engelmannii Parry were collected along two elevational transects in the central Rocky Mountains, and the effects of low temperature on their root respiration activity were measured after growth in cool and warm soil temperature treatments.Picea engelmannii roots respired significantly faster than those ofA. lasiocarpa, and trees of both species collected from high elevations respired significantly faster than those from lower elevations. The mean Q and mean activation energy of respiration were 2.0 and 47.2 kJ mol, respectively; they did not differ between transects, species, elevations of collection, or the soil temperature treatments. The results suggest ecotypic differentiation has occurred along these transects resulting in higher root respiration rates at higher elevations.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.