Video is one of the fastest growing online services offered to consumers. The rapid growth of online video consumption brings new opportunities for marketing executives and researchers to analyze consumer behavior. However, video introduces new challenges. Specifically, analyzing unstructured video data presents formidable methodological challenges that limit the current use of multimedia data to generate marketing insights. To address this challenge, the authors propose a novel video feature framework based on machine learning and computer vision techniques, which helps marketers predict and understand the consumption of online video from a content-based perspective. The authors apply this frame-work to two unique datasets: one provided by Masterclass.com, consisting of 771 online videos and more than 2.6 million viewing records from 225,580 consumers, and another from Crash Course, consisting of 1,127 videos focusing on more traditional education disciplines. The analyses show that the framework proposed in this paper can be used to accurately predict both individual-level consumer behavior and aggregate video popularity in these two very different contexts. The authors discuss how their findings and methods can be used to advance management and marketing research with unstructured video data in other contexts such as video marketing and entertainment analytics.
Satellite imagery is a form of big data that can be harnessed for many social good applications, especially those focusing on rural areas. In this article, we describe the common problem of selecting sites for and planning rural development activities as informed by remote sensing and satellite image analysis. Effective planning in poor rural areas benefits from information that is not available and is difficult to obtain at any appreciable scale by any means other than algorithms for estimation and inference from remotely sensed images. We discuss two cases in depth: the targeting of unconditional cash transfers to extremely poor villages in sub-Saharan Africa and the siting and planning of solar-powered microgrids in remote villages in India. From these cases, we draw out some common lessons broadly applicable to informed rural development.
The road freight sector is responsible for a large and growing share of greenhouse gas emissions, but reliable data on the amount of freight that is moved on roads in many parts of the world are scarce. Many low-and middle-income countries have limited ground-based traffic monitoring and freight surveying activities. In this proof of concept, we show that we can use an object detection network to count trucks in satellite images and predict average annual daily truck traffic from those counts. We describe a complete model, test the uncertainty of the estimation, and discuss the transfer to developing countries. arXiv:1907.07660v1 [cs.CY]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.