Switzerlandb-Catenin (Armadillo in Drosophila) is a multitasking and evolutionary conserved molecule that in metazoans exerts a crucial role in a multitude of developmental and homeostatic processes. More specifically, b-catenin is an integral structural component of cadherin-based adherens junctions, and the key nuclear effector of canonical Wnt signalling in the nucleus. Imbalance in the structural and signalling properties of b-catenin often results in disease and deregulated growth connected to cancer and metastasis. Intense research into the life of b-catenin has revealed a complex picture. Here, we try to capture the state of the art: we try to summarize and make some sense of the processes that regulate b-catenin, as well as the plethora of b-catenin binding partners. One focus will be the interaction of b-catenin with different transcription factors and the potential implications of these interactions for direct cross-talk between b-catenin and non-Wnt signalling pathways.
Certain members of the Bcl-2 family inhibit apoptosis while others facilitate this physiological process of cell death. An expression screen for proteins that bind to Bcl-2 yielded a small novel protein, denoted Bim, whose only similarity to any known protein is the short (nine amino acid) BH3 motif shared by most Bcl-2 homologues. Bim provokes apoptosis, and the BH3 region is required for Bcl-2 binding and for most of its cytotoxicity. Like Bcl-2, Bim possesses a hydrophobic C-terminus and localizes to intracytoplasmic membranes. Three Bim isoforms, probably generated by alternative splicing, all induce apoptosis, the shortest being the most potent. Wild-type Bcl-2 associates with Bim in vivo and modulates its death function, whereas Bcl-2 mutants that lack survival function do neither. Significantly, Bcl-x L and Bcl-w, the two closest homologues of Bcl-2, also bind to Bim and inhibit its activity, but more distant viral homologues, adenovirus E1B19K and Epstein-Barr virus BHRF-1, can do neither. Hence, Bim appears to act as a 'death ligand' which can only neutralize certain members of the pro-survival Bcl-2 sub-family.
Cell-cell communication via Wnt signals represents a fundamental means by which animal development and homeostasis are controlled. The identification of components of the Wnt pathway is reaching saturation for the transduction process in receiving cells but is incomplete concerning the events occurring in Wnt-secreting cells. Here, we describe the discovery of a novel Wnt pathway component, Wntless (Wls/Evi), and show that it is required for Wingless-dependent patterning processes in Drosophila, for MOM-2-governed polarization of blastomeres in C. elegans, and for Wnt3a-mediated communication between cultured human cells. In each of these cases, Wls is acting in the Wnt-sending cells to promote the secretion of Wnt proteins. Since loss of Wls function has no effect on other signaling pathways yet appears to impede all the Wnt signals we analyzed, we propose that Wls represents an ancient partner for Wnts dedicated to promoting their secretion into the extracellular milieu.
The canonical Wnt pathway has gathered much attention in recent years owing to its fundamental contribution to metazoan development, tissue homeostasis and human malignancies. Wnt target gene transcription is regulated by nuclear beta-catenin, and genetic assays have revealed various collaborating protein cofactors. Their daunting number and diverse nature, however, make it difficult to arrange an orderly picture of the nuclear Wnt transduction events. Yet, these findings emphasize that beta-catenin-mediated transcription affects chromatin. How does beta-catenin cope with chromatin regulation to turn on Wnt target genes?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.