Cell-cell communication via Wnt signals represents a fundamental means by which animal development and homeostasis are controlled. The identification of components of the Wnt pathway is reaching saturation for the transduction process in receiving cells but is incomplete concerning the events occurring in Wnt-secreting cells. Here, we describe the discovery of a novel Wnt pathway component, Wntless (Wls/Evi), and show that it is required for Wingless-dependent patterning processes in Drosophila, for MOM-2-governed polarization of blastomeres in C. elegans, and for Wnt3a-mediated communication between cultured human cells. In each of these cases, Wls is acting in the Wnt-sending cells to promote the secretion of Wnt proteins. Since loss of Wls function has no effect on other signaling pathways yet appears to impede all the Wnt signals we analyzed, we propose that Wls represents an ancient partner for Wnts dedicated to promoting their secretion into the extracellular milieu.
Wnt ligands are lipid-modified, secreted glycoproteins that control multiple steps during embryogenesis and adult-tissue homeostasis. Little is known about the mechanisms underlying Wnt secretion. Recently, Wntless (Wls/Evi/Srt) was identified as a conserved multi-pass transmembrane protein whose function seems to be dedicated to promoting the release of Wnts. Here, we describe Wls accumulation in the Golgi apparatus of Wnt/Wingless (Wg)-producing cells in Drosophila, and show that this localization is essential for Wg secretion. Moreover, Wls localization and levels critically depend on retromer, a conserved protein complex that mediates endosome-to-Golgi protein trafficking in yeast. In the absence of the retromer components Dvps35 or Dvps26, but in presence of Wg, Wls is degraded and Wg secretion impaired. Our results indicate that Wg, clathrin-mediated endocytosis and retromer sustain a Wls traffic loop from the Golgi to the plasma membrane and back to the Golgi, thereby enabling Wls to direct Wnt secretion.
How functional WNT proteins are made and how their secretion is regulated is becoming a focal point for the WNT-signalling field. Recently, lipoprotein particles, WNT lipid modifications, the conserved transmembrane protein Wntless (WLS; also known as EVI and SRT) and the retromer complex have been implicated in WNT secretion. Our aim is to synthesize ideas from these new findings for the mechanisms that underlie WNT secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.